--- base_model: openai/whisper-tiny datasets: - fleurs language: - de library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny German - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: de_de split: None args: 'config: de split: test' metrics: - type: wer value: 164.4974887940811 name: Wer --- # Whisper Tiny German - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Wer: 164.4975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.1672 | 4.7619 | 1000 | 0.6545 | 118.3939 | | 0.0219 | 9.5238 | 2000 | 0.7572 | 140.6221 | | 0.0081 | 14.2857 | 3000 | 0.8154 | 144.2296 | | 0.0065 | 19.0476 | 4000 | 0.8331 | 164.4975 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1