File size: 5,041 Bytes
0e81847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-clean-hi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-clean-hi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5136
- Wer: 28.2379

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 48
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 1.5251        | 0.46  | 50   | 1.2276          | 88.8034 |
| 0.7311        | 0.92  | 100  | 0.6706          | 50.3372 |
| 0.5582        | 1.38  | 150  | 0.5367          | 43.6798 |
| 0.4555        | 1.83  | 200  | 0.4448          | 43.1783 |
| 0.3326        | 2.29  | 250  | 0.3594          | 36.2182 |
| 0.2394        | 2.75  | 300  | 0.2507          | 33.5380 |
| 0.1449        | 3.21  | 350  | 0.2294          | 32.7252 |
| 0.1407        | 3.67  | 400  | 0.2144          | 30.6070 |
| 0.1048        | 4.13  | 450  | 0.2125          | 29.6299 |
| 0.0854        | 4.59  | 500  | 0.2085          | 29.1371 |
| 0.0762        | 5.05  | 550  | 0.2125          | 28.4109 |
| 0.0445        | 5.5   | 600  | 0.2168          | 28.4973 |
| 0.0474        | 5.96  | 650  | 0.2197          | 28.2725 |
| 0.0249        | 6.42  | 700  | 0.2324          | 28.2898 |
| 0.0267        | 6.88  | 750  | 0.2287          | 27.2696 |
| 0.0144        | 7.34  | 800  | 0.2440          | 27.2869 |
| 0.0154        | 7.8   | 850  | 0.2524          | 27.3733 |
| 0.008         | 8.26  | 900  | 0.2648          | 27.1312 |
| 0.0103        | 8.72  | 950  | 0.2602          | 27.9353 |
| 0.0066        | 9.17  | 1000 | 0.2718          | 28.3330 |
| 0.0073        | 9.63  | 1050 | 0.2705          | 27.4771 |
| 0.0053        | 10.09 | 1100 | 0.2828          | 27.5030 |
| 0.0044        | 10.55 | 1150 | 0.2882          | 27.2004 |
| 0.0045        | 11.01 | 1200 | 0.2892          | 27.5117 |
| 0.0037        | 11.47 | 1250 | 0.2961          | 27.3215 |
| 0.0031        | 11.93 | 1300 | 0.2934          | 27.0534 |
| 0.0022        | 12.39 | 1350 | 0.3014          | 27.1053 |
| 0.003         | 12.84 | 1400 | 0.3077          | 26.5779 |
| 0.0022        | 13.3  | 1450 | 0.3096          | 26.8373 |
| 0.002         | 13.76 | 1500 | 0.3123          | 26.5347 |
| 0.0017        | 14.22 | 1550 | 0.3186          | 26.8632 |
| 0.0016        | 14.68 | 1600 | 0.3255          | 26.6903 |
| 0.0012        | 15.14 | 1650 | 0.3329          | 26.4396 |
| 0.0015        | 15.6  | 1700 | 0.3336          | 27.0188 |
| 0.0009        | 16.06 | 1750 | 0.3361          | 26.4569 |
| 0.001         | 16.51 | 1800 | 0.3483          | 26.4655 |
| 0.0014        | 16.97 | 1850 | 0.3533          | 26.2666 |
| 0.0004        | 17.43 | 1900 | 0.3581          | 26.0678 |
| 0.0004        | 17.89 | 1950 | 0.3688          | 26.5087 |
| 0.0003        | 18.35 | 2000 | 0.3738          | 26.2148 |
| 0.0004        | 18.81 | 2050 | 0.3729          | 26.1197 |
| 0.0005        | 19.27 | 2100 | 0.3850          | 25.8776 |
| 0.0002        | 19.72 | 2150 | 0.3874          | 25.9900 |
| 0.0004        | 20.18 | 2200 | 0.3927          | 25.9727 |
| 0.0           | 20.64 | 2250 | 0.4037          | 25.9381 |
| 0.0           | 21.1  | 2300 | 0.4133          | 25.9208 |
| 0.0001        | 21.56 | 2350 | 0.4188          | 25.5836 |
| 0.0           | 22.02 | 2400 | 0.4266          | 25.8776 |
| 0.0           | 22.48 | 2450 | 0.4380          | 26.1715 |
| 0.0           | 22.94 | 2500 | 0.4473          | 25.6268 |
| 0.0           | 23.39 | 2550 | 0.4604          | 26.0418 |
| 0.0           | 23.85 | 2600 | 0.4681          | 26.1802 |
| 0.0           | 24.31 | 2650 | 0.4833          | 26.1197 |
| 0.0           | 24.77 | 2700 | 0.4883          | 26.2234 |
| 0.0           | 25.23 | 2750 | 0.4993          | 26.4914 |
| 0.0           | 25.69 | 2800 | 0.5031          | 26.7768 |
| 0.0           | 26.15 | 2850 | 0.5077          | 26.6211 |
| 0.0           | 26.61 | 2900 | 0.5102          | 27.1658 |
| 0.0           | 27.06 | 2950 | 0.5123          | 28.1688 |
| 0.0           | 27.52 | 3000 | 0.5136          | 28.2379 |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 1.12.1
- Datasets 2.16.1
- Tokenizers 0.15.0