File size: 36,742 Bytes
e675356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are the existing regulatory safety requirements mentioned
in the context for medical devices?
sentences:
- "47 \nAppendix A. Primary GAI Considerations \nThe following primary considerations\
\ were derived as overarching themes from the GAI PWG \nconsultation process.\
\ These considerations (Governance, Pre-Deployment Testing, Content Provenance,\
\ \nand Incident Disclosure) are relevant for voluntary use by any organization\
\ designing, developing, and \nusing GAI and also inform the Actions to Manage\
\ GAI risks. Information included about the primary \nconsiderations is not exhaustive,\
\ but highlights the most relevant topics derived from the GAI PWG. \nAcknowledgments:\
\ These considerations could not have been surfaced without the helpful analysis\
\ and \ncontributions from the community and NIST staff GAI PWG leads: George Awad,\
\ Luca Belli, Harold Booth, \nMat Heyman, Yooyoung Lee, Mark Pryzbocki, Reva Schwartz,\
\ Martin Stanley, and Kyra Yee. \nA.1. Governance \nA.1.1. Overview \nLike any\
\ other technology system, governance principles and techniques can be used to\
\ manage risks"
- "behavior or outcomes of a GAI model or system, how they could occur, and stress\
\ test safeguards”. AI \nred-teaming can be performed before or after AI models\
\ or systems are made available to the broader \npublic; this section focuses\
\ on red-teaming in pre-deployment contexts. \nThe quality of AI red-teaming\
\ outputs is related to the background and expertise of the AI red team \nitself.\
\ Demographically and interdisciplinarily diverse AI red teams can be used to\
\ identify flaws in the \nvarying contexts where GAI will be used. For best results,\
\ AI red teams should demonstrate domain \nexpertise, and awareness of socio-cultural\
\ aspects within the deployment context. AI red-teaming results \nshould be given\
\ additional analysis before they are incorporated into organizational governance\
\ and \ndecision making, policy and procedural updates, and AI risk management\
\ efforts. \nVarious types of AI red-teaming may be appropriate, depending on the\
\ use case: \n•"
- "SECTION TITLE\n \n \n \n \n \n \nApplying The Blueprint for an AI Bill of Rights\
\ \nRELATIONSHIP TO EXISTING LAW AND POLICY\nThere are regulatory safety requirements\
\ for medical devices, as well as sector-, population-, or technology-spe\ncific\
\ privacy and security protections. Ensuring some of the additional protections\
\ proposed in this framework \nwould require new laws to be enacted or new policies\
\ and practices to be adopted. In some cases, exceptions to \nthe principles described\
\ in the Blueprint for an AI Bill of Rights may be necessary to comply with existing\
\ law, \nconform to the practicalities of a specific use case, or balance competing\
\ public interests. In particular, law \nenforcement, and other regulatory contexts\
\ may require government actors to protect civil rights, civil liberties, \nand\
\ privacy in a manner consistent with, but using alternate mechanisms to, the\
\ specific principles discussed in"
- source_sentence: What steps should be taken to adapt processes based on findings
from incidents involving harmful content generation?
sentences:
- "some cases may include personal data. The use of personal data for GAI training\
\ raises risks to widely \naccepted privacy principles, including to transparency,\
\ individual participation (including consent), and \npurpose specification. For\
\ example, most model developers do not disclose specific data sources on \nwhich\
\ models were trained, limiting user awareness of whether personally identifiably\
\ information (PII) \nwas trained on and, if so, how it was collected. \nModels\
\ may leak, generate, or correctly infer sensitive information about individuals.\
\ For example, \nduring adversarial attacks, LLMs have revealed sensitive information\
\ (from the public domain) that was \nincluded in their training data. This problem\
\ has been referred to as data memorization, and may pose \nexacerbated privacy\
\ risks even for data present only in a small number of training samples. \n\
In addition to revealing sensitive information in GAI training data, GAI models\
\ may be able to correctly"
- "performance, feedback received, and improvements made. \nHarmful Bias and Homogenization\
\ \nMG-4.2-002 \nPractice and follow incident response plans for addressing the\
\ generation of \ninappropriate or harmful content and adapt processes based on\
\ findings to \nprevent future occurrences. Conduct post-mortem analyses of incidents\
\ with \nrelevant AI Actors, to understand the root causes and implement preventive\
\ \nmeasures. \nHuman-AI Configuration; \nDangerous, Violent, or Hateful \nContent\
\ \nMG-4.2-003 Use visualizations or other methods to represent GAI model behavior\
\ to ease \nnon-technical stakeholders understanding of GAI system functionality.\
\ \nHuman-AI Configuration \nAI Actor Tasks: AI Deployment, AI Design, AI Development,\
\ Affected Individuals and Communities, End-Users, Operation and \nMonitoring,\
\ TEVV \n \nMANAGE 4.3: Incidents and errors are communicated to relevant AI Actors,\
\ including affected communities. Processes for tracking,"
- "AI Actor Tasks: AI Deployment, AI Design, AI Impact Assessment, Affected Individuals\
\ and Communities, Domain Experts, End-\nUsers, Human Factors, Operation and Monitoring\
\ \n \nMEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated\
\ during the MAP function are selected for \nimplementation starting with the\
\ most significant AI risks. The risks or trustworthiness characteristics that\
\ will not – or cannot – be \nmeasured are properly documented. \nAction ID \n\
Suggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and\
\ modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate\
\ tools designed to analyze content provenance and detect data \nanomalies, verify\
\ the authenticity of digital signatures, and identify patterns \nassociated with\
\ misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate\
\ evaluation metrics by demographic factors to identify any"
- source_sentence: What are the Principles of Artificial Intelligence Ethics developed
by the US Intelligence Community intended to guide?
sentences:
- "Evaluation data; Ethical considerations; Legal and regulatory requirements. \n\
Information Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI\
\ Deployment, AI Impact Assessment, Domain Experts, End-Users, Operation and Monitoring,\
\ TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the\
\ MAP function – is examined and documented. \nAction ID \nSuggested Action \n\
GAI Risks \nMS-2.10-001 \nConduct AI red-teaming to assess issues such as: Outputting\
\ of training data \nsamples, and subsequent reverse engineering, model extraction,\
\ and \nmembership inference risks; Revealing biometric, confidential, copyrighted,\
\ \nlicensed, patented, personal, proprietary, sensitive, or trade-marked information;\
\ \nTracking or revealing location information of users or members of training\
\ \ndatasets. \nHuman-AI Configuration; \nInformation Integrity; Intellectual \n\
Property \nMS-2.10-002 \nEngage directly with end-users and other stakeholders\
\ to understand their"
- "8 \nTrustworthy AI Characteristics: Accountable and Transparent, Privacy Enhanced,\
\ Safe, Secure and \nResilient \n2.5. Environmental Impacts \nTraining, maintaining,\
\ and operating (running inference on) GAI systems are resource-intensive activities,\
\ \nwith potentially large energy and environmental footprints. Energy and carbon\
\ emissions vary based on \nwhat is being done with the GAI model (i.e., pre-training,\
\ fine-tuning, inference), the modality of the \ncontent, hardware used, and type\
\ of task or application. \nCurrent estimates suggest that training a single transformer\
\ LLM can emit as much carbon as 300 round-\ntrip flights between San Francisco\
\ and New York. In a study comparing energy consumption and carbon \nemissions\
\ for LLM inference, generative tasks (e.g., text summarization) were found to\
\ be more energy- \nand carbon-intensive than discriminative or non-generative\
\ tasks (e.g., text classification)."
- "security and defense activities.21 Similarly, the U.S. Intelligence Community\
\ (IC) has developed the Principles \nof Artificial Intelligence Ethics for the\
\ Intelligence Community to guide personnel on whether and how to \ndevelop and\
\ use AI in furtherance of the IC's mission, as well as an AI Ethics Framework\
\ to help implement \nthese principles.22\nThe National Science Foundation (NSF)\
\ funds extensive research to help foster the \ndevelopment of automated systems\
\ that adhere to and advance their safety, security and \neffectiveness. Multiple\
\ NSF programs support research that directly addresses many of these principles:\
\ \nthe National AI Research Institutes23 support research on all aspects of safe,\
\ trustworthy, fair, and explainable \nAI algorithms and systems; the Cyber Physical\
\ Systems24 program supports research on developing safe \nautonomous and cyber\
\ physical systems with AI components; the Secure and Trustworthy Cyberspace25"
- source_sentence: How does Hagan (2024) propose to establish quality standards for
AI responses to legal problems?
sentences:
- "actually occurring, or large-scale risks could occur); and broad GAI negative\
\ risks, \nincluding: Immature safety or risk cultures related to AI and GAI design,\
\ \ndevelopment and deployment, public information integrity risks, including\
\ impacts \non democratic processes, unknown long-term performance characteristics\
\ of GAI. \nInformation Integrity; Dangerous, \nViolent, or Hateful Content; CBRN\
\ \nInformation or Capabilities \nGV-1.3-007 Devise a plan to halt development\
\ or deployment of a GAI system that poses \nunacceptable negative risk. \nCBRN\
\ Information and Capability; \nInformation Security; Information \nIntegrity\
\ \nAI Actor Tasks: Governance and Oversight \n \nGOVERN 1.4: The risk management\
\ process and its outcomes are established through transparent policies, procedures,\
\ and other \ncontrols based on organizational risk priorities. \nAction ID \n\
Suggested Action \nGAI Risks \nGV-1.4-001 \nEstablish policies and mechanisms\
\ to prevent GAI systems from generating"
- "gists, advocates, journalists, policymakers, and communities in the United States\
\ and around the world. This \ntechnical companion is intended to be used as a\
\ reference by people across many circumstances – anyone \nimpacted by automated\
\ systems, and anyone developing, designing, deploying, evaluating, or making\
\ policy to \ngovern the use of an automated system. \nEach principle is accompanied\
\ by three supplemental sections: \n1\n2\nWHY THIS PRINCIPLE IS IMPORTANT: \n\
This section provides a brief summary of the problems that the principle seeks\
\ to address and protect against, including \nillustrative examples. \nWHAT SHOULD\
\ BE EXPECTED OF AUTOMATED SYSTEMS: \n• The expectations for automated systems\
\ are meant to serve as a blueprint for the development of additional technical\n\
standards and practices that should be tailored for particular sectors and contexts.\n\
• This section outlines practical steps that can be implemented to realize the\
\ vision of the Blueprint for an AI Bill of Rights. The"
- "Greshake, K. et al. (2023) Not what you've signed up for: Compromising Real-World\
\ LLM-Integrated \nApplications with Indirect Prompt Injection. arXiv. https://arxiv.org/abs/2302.12173\
\ \nHagan, M. (2024) Good AI Legal Help, Bad AI Legal Help: Establishing quality\
\ standards for responses to \npeople’s legal problem stories. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4696936\
\ \nHaran, R. (2023) Securing LLM Systems Against Prompt Injection. NVIDIA. \n\
https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/\
\ \nInformation Technology Industry Council (2024) Authenticating AI-Generated\
\ Content. \nhttps://www.itic.org/policy/ITI_AIContentAuthorizationPolicy_122123.pdf\
\ \nJain, S. et al. (2023) Algorithmic Pluralism: A Structural Approach To Equal\
\ Opportunity. arXiv. \nhttps://arxiv.org/pdf/2305.08157 \nJi, Z. et al (2023)\
\ Survey of Hallucination in Natural Language Generation. ACM Comput. Surv. 55,\
\ 12, \nArticle 248. https://doi.org/10.1145/3571730"
- source_sentence: How can information security measures be applied to maintain the
integrity and confidentiality of GAI models and systems?
sentences:
- "using: field testing with sub-group populations to determine likelihood of \n\
exposure to generated content exhibiting harmful bias, AI red-teaming with \n\
counterfactual and low-context (e.g., “leader,” “bad guys”) prompts. For ML \n\
pipelines or business processes with categorical or numeric outcomes that rely\
\ \non GAI, apply general fairness metrics (e.g., demographic parity, equalized\
\ odds, \nequal opportunity, statistical hypothesis tests), to the pipeline or\
\ business \noutcome where appropriate; Custom, context-specific metrics developed\
\ in \ncollaboration with domain experts and affected communities; Measurements\
\ of \nthe prevalence of denigration in generated content in deployment (e.g.,\
\ sub-\nsampling a fraction of traffic and manually annotating denigrating content).\
\ \nHarmful Bias and Homogenization; \nDangerous, Violent, or Hateful \nContent\
\ \nMS-2.11-003 \nIdentify the classes of individuals, groups, or environmental\
\ ecosystems which"
- "27 \nMP-4.1-010 \nConduct appropriate diligence on training data use to assess\
\ intellectual property, \nand privacy, risks, including to examine whether use\
\ of proprietary or sensitive \ntraining data is consistent with applicable laws.\
\ \nIntellectual Property; Data Privacy \nAI Actor Tasks: Governance and Oversight,\
\ Operation and Monitoring, Procurement, Third-party entities \n \nMAP 5.1: Likelihood\
\ and magnitude of each identified impact (both potentially beneficial and harmful)\
\ based on expected use, past \nuses of AI systems in similar contexts, public\
\ incident reports, feedback from those external to the team that developed or\
\ deployed \nthe AI system, or other data are identified and documented. \nAction\
\ ID \nSuggested Action \nGAI Risks \nMP-5.1-001 Apply TEVV practices for content\
\ provenance (e.g., probing a system's synthetic \ndata generation capabilities\
\ for potential misuse or vulnerabilities. \nInformation Integrity; Information\
\ \nSecurity \nMP-5.1-002"
- "vulnerabilities in systems (hardware, software, data) and write code to exploit\
\ them. Sophisticated threat \nactors might further these risks by developing\
\ GAI-powered security co-pilots for use in several parts of \nthe attack chain,\
\ including informing attackers on how to proactively evade threat detection and\
\ escalate \nprivileges after gaining system access. \nInformation security for\
\ GAI models and systems also includes maintaining availability of the GAI system\
\ \nand the integrity and (when applicable) the confidentiality of the GAI code,\
\ training data, and model \nweights. To identify and secure potential attack\
\ points in AI systems or specific components of the AI \n \n \n12 See also https://doi.org/10.6028/NIST.AI.100-4,\
\ to be published."
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.81
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.96
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.81
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31999999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.81
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.96
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9167865159386339
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8887499999999998
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8887499999999998
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.81
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.99
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.81
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.19799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.81
name: Dot Recall@1
- type: dot_recall@3
value: 0.96
name: Dot Recall@3
- type: dot_recall@5
value: 0.99
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9167865159386339
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8887499999999998
name: Dot Mrr@10
- type: dot_map@100
value: 0.8887499999999998
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Cheselle/finetuned-arctic")
# Run inference
sentences = [
'How can information security measures be applied to maintain the integrity and confidentiality of GAI models and systems?',
'vulnerabilities in systems (hardware, software, data) and write code to exploit them. Sophisticated threat \nactors might further these risks by developing GAI-powered security co-pilots for use in several parts of \nthe attack chain, including informing attackers on how to proactively evade threat detection and escalate \nprivileges after gaining system access. \nInformation security for GAI models and systems also includes maintaining availability of the GAI system \nand the integrity and (when applicable) the confidentiality of the GAI code, training data, and model \nweights. To identify and secure potential attack points in AI systems or specific components of the AI \n \n \n12 See also https://doi.org/10.6028/NIST.AI.100-4, to be published.',
"27 \nMP-4.1-010 \nConduct appropriate diligence on training data use to assess intellectual property, \nand privacy, risks, including to examine whether use of proprietary or sensitive \ntraining data is consistent with applicable laws. \nIntellectual Property; Data Privacy \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring, Procurement, Third-party entities \n \nMAP 5.1: Likelihood and magnitude of each identified impact (both potentially beneficial and harmful) based on expected use, past \nuses of AI systems in similar contexts, public incident reports, feedback from those external to the team that developed or deployed \nthe AI system, or other data are identified and documented. \nAction ID \nSuggested Action \nGAI Risks \nMP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's synthetic \ndata generation capabilities for potential misuse or vulnerabilities. \nInformation Integrity; Information \nSecurity \nMP-5.1-002",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.81 |
| cosine_accuracy@3 | 0.96 |
| cosine_accuracy@5 | 0.99 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.81 |
| cosine_precision@3 | 0.32 |
| cosine_precision@5 | 0.198 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.81 |
| cosine_recall@3 | 0.96 |
| cosine_recall@5 | 0.99 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9168 |
| cosine_mrr@10 | 0.8887 |
| **cosine_map@100** | **0.8887** |
| dot_accuracy@1 | 0.81 |
| dot_accuracy@3 | 0.96 |
| dot_accuracy@5 | 0.99 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.81 |
| dot_precision@3 | 0.32 |
| dot_precision@5 | 0.198 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.81 |
| dot_recall@3 | 0.96 |
| dot_recall@5 | 0.99 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9168 |
| dot_mrr@10 | 0.8887 |
| dot_map@100 | 0.8887 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 21.75 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 177.81 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0 | 30 | 0.8699 |
| 1.6667 | 50 | 0.8879 |
| 2.0 | 60 | 0.8887 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |