{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e23608baf00>" }, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714454911421051466, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": { ":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPX7D1E5UU+VPeQvuAiPr6074O8hhlMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG46ivxH5JuMAWyUS/GMAXSUR0CmNVhbnoxIdX2UKGgGR0Bvi7sMRYigaAdNKwFoCEdApjd/CVKPGXV9lChoBkdAMofJ/5LytmgHS9FoCEdApjhqy6cy33V9lChoBkdATktaY/mknGgHS8xoCEdApjlaoqCpWHV9lChoBkdAcSh5cC5mRWgHTQUBaAhHQKY6SrFOwgV1fZQoaAZHQG4TBNM495hoB00GAWgIR0CmO+lDF6zFdX2UKGgGR0BP0gTZg5R1aAdL4mgIR0CmPKLnDBM0dX2UKGgGR0BvqpC4SYgJaAdNAQFoCEdApj2GV7hNunV9lChoBkdAUbRkf9xZMmgHS9poCEdApj45yCFsYXV9lChoBkdAZP2ATZg5R2gHTegDaAhHQKZDIY2sJY11fZQoaAZHQG5l3solUqBoB00mAWgIR0CmRMAL7XQMdX2UKGgGR0BhCEpuuRs/aAdN6ANoCEdApkl+uNgjQnV9lChoBkdAZzA2QXAM2GgHTegDaAhHQKZODAP/aQF1fZQoaAZHQGxeSmIj4YdoB00cAWgIR0CmT1VS4vvjdX2UKGgGR0BxD7Mmnfl7aAdNHwFoCEdAplCg7FKkEnV9lChoBkdAYkEGs3hn8WgHTegDaAhHQKZVa0/nnuB1fZQoaAZHQG0SBpYcNpdoB0v7aAhHQKZWRciW3Sd1fZQoaAZHQHBWKvq1PWRoB00TAWgIR0CmV9kVnEl3dX2UKGgGR0Bx2SjN6gM+aAdNGQNoCEdApltWfukUK3V9lChoBkdAbz1alk6LfmgHTTMBaAhHQKZdUFEAo5R1fZQoaAZHQHDLSQT238ZoB00AAWgIR0CmXjDmKZUldX2UKGgGR0BxsI9kjHGTaAdL5GgIR0CmXui5uqFRdX2UKGgGR0Bxo4IldC3PaAdNEAFoCEdApl/U0SAYpHV9lChoBkdAcJ+wrDqGDmgHTRMBaAhHQKZhXRPXTVl1fZQoaAZHQHDNmIsRQJpoB00kAWgIR0CmYmP4VRDUdX2UKGgGR0BwsirvLHMmaAdNNwFoCEdApmN8svqTr3V9lChoBkdATsbL0SRKYmgHS8poCEdApmQrgflp5HV9lChoBkdAb+l09QoCuGgHS/FoCEdApmWK3PRiPXV9lChoBkdAco9+FDfFaWgHS/VoCEdApmalUlzEJnV9lChoBkdAcRFDB/I8yWgHS/FoCEdApmgJaNdZ73V9lChoBkdAWWEHkcS5AmgHTegDaAhHQKZtdKT0QK91fZQoaAZHQHFFhP9DQZ5oB0vsaAhHQKZuPAO8TSN1fZQoaAZHQHDjpy6tknVoB0vuaAhHQKZvq7Njbzt1fZQoaAZHQHIWWb5M10loB00oAWgIR0CmcKnh0hePdX2UKGgGR0Bws3nmq5skaAdNEgFoCEdApnGPa8Hv+nV9lChoBkdAZtQgAZKnN2gHTegDaAhHQKZ2bZgXuVp1fZQoaAZHQEYSXN1QqI9oB0vNaAhHQKZ3GPz4DcN1fZQoaAZHQG7RqwyIpH9oB00CAWgIR0CmeJg0sOG1dX2UKGgGR0ByKLnvDxb0aAdNJwFoCEdApnmNxffGdnV9lChoBkdAcoAs7uDzy2gHTSgBaAhHQKZ6miEg4fh1fZQoaAZHQHFgYA80UGpoB0vvaAhHQKZ7Ymnfl6t1fZQoaAZHQGwxSJj2BatoB03xAmgIR0Cmf9YYBNmEdX2UKGgGR0BxfTthNM4+aAdNHgFoCEdApoEYj4YaYXV9lChoBkdAbvKY2Kl54WgHTTMBaAhHQKaDKGyHEdh1fZQoaAZHQHEx/NzKcNJoB02DAWgIR0CmhJrjYI0JdX2UKGgGR0BxSVzCDVYqaAdNGgFoCEdApoWLEUCaJHV9lChoBkdAcAJdY4hllWgHTToDaAhHQKaJ8ee4Cp51fZQoaAZHQHJLyaJAMUhoB00LAWgIR0Cmiseo1k1/dX2UKGgGR0BwXQQ5FPSEaAdNMAFoCEdApoyAy44IbHV9lChoBkdAcgMzu4PPLWgHS+VoCEdApo1MpgCwKXV9lChoBkdAcWB4VARkE2gHTSgBaAhHQKaOTUUfxMF1fZQoaAZHQFP2EwnH/95oB0vJaAhHQKaO7X6InBt1fZQoaAZHQHG9TWsijcpoB00xAWgIR0CmkI+LvTgEdX2UKGgGR0BDHwdKdxyXaAdL4GgIR0CmkUpnQID6dX2UKGgGR0BuyZi3G4qgaAdNJAFoCEdAppJdAC4jKXV9lChoBkdAcAg3K0UoKGgHTRABaAhHQKaTc+Pikwh1fZQoaAZHQFDWgtvn8sNoB0vQaAhHQKaU1HvMKTl1fZQoaAZHQEOCdQwblzVoB0u6aAhHQKaVc8bJfY11fZQoaAZHQHKLhp5/smhoB00eAWgIR0CmltOxSpBHdX2UKGgGR0BQ+GjsUqQSaAdLz2gIR0Cml+mgJ1JUdX2UKGgGR0BxnO3mV7hOaAdNGwFoCEdAppoyZx7zCnV9lChoBkdATYw1k1/DtWgHS8doCEdAppsSqIacZ3V9lChoBkdAceiPJJXhfmgHTR4BaAhHQKacBdFfAsV1fZQoaAZHQHIRWdZq20BoB00lAWgIR0CmnPSfUWl/dX2UKGgGR0BzEy7kGRmsaAdNHQFoCEdApp6B7eEZi3V9lChoBkdAcbnH3Dej22gHTQkBaAhHQKafYuFpPAR1fZQoaAZHQEuD3pwCKaZoB0u8aAhHQKagBQKKHfx1fZQoaAZHQHGv4KQaJhxoB0v+aAhHQKag2b3oLXt1fZQoaAZHQHKV9c4YJmdoB00GAWgIR0CmolcqWkaddX2UKGgGR0Bx9TKEFnqWaAdNLgFoCEdApqNgbADaG3V9lChoBkdAcdZafzz3AWgHTUUBaAhHQKakdqC6H0t1fZQoaAZHQHE91VcUuctoB00IAWgIR0CmpVhK15SndX2UKGgGR0A6jmx+rlvIaAdLw2gIR0CmppbwrlNldX2UKGgGR0Bw9Q8eS0SiaAdL82gIR0Cmp3IToMa1dX2UKGgGR0BxqGT3Zf2LaAdL/WgIR0CmqFJZntfHdX2UKGgGR0BuJI4p+c6OaAdNGgFoCEdApqlIQpWmxnV9lChoBkdAQZdOdoWYW2gHS7poCEdApqp9xS5y2nV9lChoBkdAQHkgpz90imgHS7doCEdApqsRy2hIv3V9lChoBkdATBsbFS88LmgHS6poCEdApqulMIu5BnV9lChoBkdAcpd2h7E5yWgHS/BoCEdApqx1KK5083V9lChoBkdAQv70HyEtd2gHS9loCEdApq0luUD+znV9lChoBkdAbyimNR3u/mgHTSoBaAhHQKau1yRSxaB1fZQoaAZHQG2wwKBun/FoB0v+aAhHQKawAh6jWTZ1fZQoaAZHQE6CC7sfJV9oB0vYaAhHQKaw4EC/47B1fZQoaAZHQFCUbMotthxoB0vjaAhHQKax1svZh8Z1fZQoaAZHQHBns2WIGhVoB00BAWgIR0Cms6GoR7JGdX2UKGgGR0BxTHBInSfEaAdNIgFoCEdAprSUl7dBSnV9lChoBkdAcohLPUrkKmgHTSIBaAhHQKa1h5LRKHx1fZQoaAZHQBIZ1Ng0CRxoB0vQaAhHQKa2M+10DEF1fZQoaAZHQHCTQLmZE2JoB0vraAhHQKa3lMs6JZZ1fZQoaAZHQHApTiS7oStoB00QAWgIR0CmuHyeqaPTdX2UKGgGR0BuzVKmKqGUaAdNGQFoCEdAprlp1HOKO3V9lChoBkdAcVmR1oxpL2gHS/loCEdAprpJJTVDr3V9lChoBkdAUpxbRnezlmgHS91oCEdAprubjJdSl3V9lChoBkdAcjG8iOearmgHTQ0BaAhHQKa8fv99+gF1fZQoaAZHQHB2x4MWoFVoB00pAWgIR0CmvYCXhOxjdX2UKGgGR0Bx0y6TW5H3aAdL6mgIR0Cmvkg3kxREdX2UKGgGR0ByrMwVTJhfaAdNKwFoCEdApr/64J/oaHV9lChoBkdAb91GnXNC7mgHTZgBaAhHQKbBgw9q1w51fZQoaAZHQHBksynDR+loB0v7aAhHQKbCV4j8k2R1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 3908, "observation_space": { ":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [ 8 ], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" } }