######################################################################################################## # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM # The OnlySports Collection - https://huggingface.co/collections/Chrisneverdie/onlysports-66b3e5cf595eb81220cc27a6 ######################################################################################################## import numpy as np np.set_printoptions(precision=4, suppress=True, linewidth=200) import types, torch import torch.nn as nn from torch.nn import functional as F import os MyModule = torch.jit.ScriptModule MyFunction = torch.jit.script_method class RWKV_TOKENIZER(): table: list[list[list[bytes]]] good: list[set[int]] wlen: list[int] def __init__(self, file_name): self.idx2token = {} sorted = [] # must be already sorted lines = open(file_name, "r", encoding="utf-8").readlines() for l in lines: idx = int(l[:l.index(' ')]) x = eval(l[l.index(' '):l.rindex(' ')]) x = x.encode("utf-8") if isinstance(x, str) else x assert isinstance(x, bytes) assert len(x) == int(l[l.rindex(' '):]) sorted += [x] self.idx2token[idx] = x self.token2idx = {} for k, v in self.idx2token.items(): self.token2idx[v] = int(k) # precompute some tables for fast matching self.table = [[[] for j in range(256)] for i in range(256)] self.good = [set() for i in range(256)] self.wlen = [0 for i in range(256)] for i in reversed(range(len(sorted))): # reverse order - match longer tokens first s = sorted[i] if len(s) >= 2: s0 = int(s[0]) s1 = int(s[1]) self.table[s0][s1] += [s] self.wlen[s0] = max(self.wlen[s0], len(s)) self.good[s0].add(s1) def encodeBytes(self, src: bytes) -> list[int]: src_len: int = len(src) tokens: list[int] = [] i: int = 0 while i < src_len: s: bytes = src[i : i + 1] if i < src_len - 1: s1: int = int(src[i + 1]) s0: int = int(src[i]) if s1 in self.good[s0]: sss: bytes = src[i : i + self.wlen[s0]] try: s = next(filter(sss.startswith, self.table[s0][s1])) except: pass tokens.append(self.token2idx[s]) i += len(s) return tokens def decodeBytes(self, tokens): return b''.join(map(lambda i: self.idx2token[i], tokens)) def encode(self, src: str): return self.encodeBytes(src.encode("utf-8")) def decode(self, tokens): return self.decodeBytes(tokens).decode('utf-8') def printTokens(self, tokens): for i in tokens: s = self.idx2token[i] try: s = s.decode('utf-8') except: pass print(f'{repr(s)}{i}', end=' ') # print(repr(s), i) print() ######################################################################################################## def sample_logits(out, temperature=1.0, top_p=0.8): probs = F.softmax(out, dim=-1).numpy() sorted_probs = np.sort(probs)[::-1] cumulative_probs = np.cumsum(sorted_probs) cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)]) probs[probs < cutoff] = 0 if temperature != 1.0: probs = probs**(1.0 / temperature) probs = probs / np.sum(probs) out = np.random.choice(a=len(probs), p=probs) return out ######################################################################################################## tokenizer = RWKV_TOKENIZER("rwkv_vocab_v20230424.txt") args = types.SimpleNamespace() args.MODEL_NAME = 'OnlySportsLM' args.n_layer = 20 args.n_embd =640 args.vocab_size = 65536 context ="""Kobe Bryant""" NUM_TRIALS = 1 LENGTH_PER_TRIAL = 120 TEMPERATURE = 0.5 TOP_P = 0.7 class RWKV_RNN(MyModule): def __init__(self, args): super().__init__() self.args = args self.eval() # set torch to inference mode w = torch.load(args.MODEL_NAME + '.pth', map_location='cpu') for k in w.keys(): w[k] = w[k].float() # convert to f32 type if '.time_' in k: w[k] = w[k].squeeze() if '.time_faaaa' in k: w[k] = w[k].unsqueeze(-1) self.n_head = w['blocks.0.att.time_faaaa'].shape[0] self.head_size = w['blocks.0.ln1.weight'].shape[0] // self.n_head self.w = types.SimpleNamespace() # set self.w from w self.w.blocks = {} for k in w.keys(): # example: "blocks.0.att.time_first" => self.w.blocks[0].att.time_first parts = k.split('.') last = parts.pop() here = self.w for p in parts: if p.isdigit(): p = int(p) if p not in here: here[p] = types.SimpleNamespace() here = here[p] else: if not hasattr(here, p): setattr(here, p, types.SimpleNamespace()) here = getattr(here, p) setattr(here, last, w[k]) def layer_norm(self, x, w): return F.layer_norm(x, (self.args.n_embd,), weight=w.weight, bias=w.bias) @MyFunction def channel_mixing(self, x, state, i:int, time_maa_k, time_maa_r, kw, vw, rw): i0 = (2+self.head_size)*i+0 sx = state[i0] - x xk = x + sx * time_maa_k xr = x + sx * time_maa_r state[i0] = x r = torch.sigmoid(rw @ xr) k = torch.square(torch.relu(kw @ xk)) # square relu, primer paper return r * (vw @ k) @MyFunction def time_mixing(self, x, state, i:int, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, time_first, time_decay, kw, vw, rw, gw, ow, ln_w, ln_b): H = self.n_head S = self.head_size i1 = (2+S)*i+1 sx = state[i1] - x state[i1] = x xxx = x + sx * x_maa xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1) xxx = torch.bmm(xxx, tm_w2).view(5, -1) mw, mk, mv, mr, mg = xxx.unbind(dim=0) xw = x + sx * (w_maa + mw) xk = x + sx * (k_maa + mk) xv = x + sx * (v_maa + mv) xr = x + sx * (r_maa + mr) xg = x + sx * (g_maa + mg) w = (time_decay + (torch.tanh(xw @ td_w1) @ td_w2).float()).view(H, S, 1) w = torch.exp(-torch.exp(w.float())) r = (rw @ xr).view(H, 1, S) k = (kw @ xk).view(H, S, 1) v = (vw @ xv).view(H, 1, S) g = F.silu(gw @ xg) s = state[(2+S)*i+2:(2+S)*(i+1), :].reshape(H, S, S) x = torch.zeros(H, S) a = k @ v x = r @ (time_first * a + s) s = a + w * s state[(2+S)*i+2:(2+S)*(i+1), :] = s.reshape(S, -1) x = x.flatten() x = F.group_norm(x.unsqueeze(0), num_groups=H, weight=ln_w, bias=ln_b, eps = 64e-5).squeeze(0) * g # same as gn(x/8, eps=1e-5) return ow @ x def forward(self, token, state): with torch.no_grad(): if state == None: state = torch.zeros(self.args.n_layer * (2+self.head_size), self.args.n_embd) x = self.w.emb.weight[token] x = self.layer_norm(x, self.w.blocks[0].ln0) for i in range(self.args.n_layer): att = self.w.blocks[i].att x = x + self.time_mixing(self.layer_norm(x, self.w.blocks[i].ln1), state, i, att.time_maa_x, att.time_maa_w, att.time_maa_k, att.time_maa_v, att.time_maa_r, att.time_maa_g, att.time_maa_w1, att.time_maa_w2, att.time_decay_w1, att.time_decay_w2, att.time_faaaa, att.time_decay, att.key.weight, att.value.weight, att.receptance.weight, att.gate.weight, att.output.weight, att.ln_x.weight, att.ln_x.bias) ffn = self.w.blocks[i].ffn x = x + self.channel_mixing(self.layer_norm(x, self.w.blocks[i].ln2), state, i, ffn.time_maa_k, ffn.time_maa_r, ffn.key.weight, ffn.value.weight, ffn.receptance.weight) x = self.w.head.weight @ self.layer_norm(x, self.w.ln_out) return x.float(), state print(f'\nUsing CPU. Loading {args.MODEL_NAME} ...') model = RWKV_RNN(args) #print(f'\nPreprocessing context (slow version. see v2/rwkv/model.py for fast version)') init_state = None for token in tokenizer.encode(context): init_out, init_state = model.forward(token, init_state) for TRIAL in range(NUM_TRIALS): print(f'\n\n--[ Trial {TRIAL} ]-----------------', context, end="") all_tokens = [] out_last = 0 out_str = '' out, state = init_out.clone(), init_state.clone() for i in range(LENGTH_PER_TRIAL): token = sample_logits(out, TEMPERATURE, TOP_P) all_tokens += [token] try: tmp = tokenizer.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: # only print when we have a valid utf-8 string #ans.append(tmp) print(tmp, end="", flush=True) #print(tmp, end="", flush=True) #print(tmp) out_last = i + 1 if '\ufffd' not in tmp: # is valid utf-8 string? out_str += tmp out_last = i + 1 except: pass out, state = model.forward(token, state) print('\n')