File size: 77,364 Bytes
bfc8c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 |
[2023-03-17 10:54:05,152][24380] Saving configuration to /home/ckahmann/RL/train_dir/default_experiment/config.json... [2023-03-17 10:54:05,155][24380] Rollout worker 0 uses device cpu [2023-03-17 10:54:05,156][24380] Rollout worker 1 uses device cpu [2023-03-17 10:54:05,157][24380] Rollout worker 2 uses device cpu [2023-03-17 10:54:05,159][24380] Rollout worker 3 uses device cpu [2023-03-17 10:54:05,160][24380] Rollout worker 4 uses device cpu [2023-03-17 10:54:05,161][24380] Rollout worker 5 uses device cpu [2023-03-17 10:54:05,162][24380] Rollout worker 6 uses device cpu [2023-03-17 10:54:05,163][24380] Rollout worker 7 uses device cpu [2023-03-17 10:54:05,210][24380] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:05,211][24380] InferenceWorker_p0-w0: min num requests: 2 [2023-03-17 10:54:05,232][24380] Starting all processes... [2023-03-17 10:54:05,233][24380] Starting process learner_proc0 [2023-03-17 10:54:05,282][24380] Starting all processes... [2023-03-17 10:54:05,293][24380] Starting process inference_proc0-0 [2023-03-17 10:54:05,293][24380] Starting process rollout_proc0 [2023-03-17 10:54:05,294][24380] Starting process rollout_proc1 [2023-03-17 10:54:05,294][24380] Starting process rollout_proc2 [2023-03-17 10:54:05,294][24380] Starting process rollout_proc3 [2023-03-17 10:54:05,295][24380] Starting process rollout_proc4 [2023-03-17 10:54:05,295][24380] Starting process rollout_proc5 [2023-03-17 10:54:05,296][24380] Starting process rollout_proc6 [2023-03-17 10:54:05,297][24380] Starting process rollout_proc7 [2023-03-17 10:54:06,789][32549] Worker 0 uses CPU cores [0, 1] [2023-03-17 10:54:06,820][32535] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:06,820][32535] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-03-17 10:54:06,833][32535] Num visible devices: 1 [2023-03-17 10:54:06,847][32568] Worker 1 uses CPU cores [2, 3] [2023-03-17 10:54:06,860][32571] Worker 6 uses CPU cores [12, 13] [2023-03-17 10:54:06,880][32572] Worker 7 uses CPU cores [14, 15] [2023-03-17 10:54:06,892][32535] Starting seed is not provided [2023-03-17 10:54:06,893][32535] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:06,893][32535] Initializing actor-critic model on device cuda:0 [2023-03-17 10:54:06,893][32535] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 10:54:06,894][32535] RunningMeanStd input shape: (1,) [2023-03-17 10:54:06,904][32535] ConvEncoder: input_channels=3 [2023-03-17 10:54:06,995][32535] Conv encoder output size: 512 [2023-03-17 10:54:06,996][32535] Policy head output size: 512 [2023-03-17 10:54:07,006][32535] Created Actor Critic model with architecture: [2023-03-17 10:54:07,006][32535] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-03-17 10:54:07,011][32570] Worker 5 uses CPU cores [10, 11] [2023-03-17 10:54:07,020][32548] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:07,020][32548] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-03-17 10:54:07,035][32567] Worker 3 uses CPU cores [6, 7] [2023-03-17 10:54:07,042][32548] Num visible devices: 1 [2023-03-17 10:54:07,165][32550] Worker 2 uses CPU cores [4, 5] [2023-03-17 10:54:07,197][32569] Worker 4 uses CPU cores [8, 9] [2023-03-17 10:54:08,475][32535] Using optimizer <class 'torch.optim.adam.Adam'> [2023-03-17 10:54:08,476][32535] No checkpoints found [2023-03-17 10:54:08,476][32535] Did not load from checkpoint, starting from scratch! [2023-03-17 10:54:08,476][32535] Initialized policy 0 weights for model version 0 [2023-03-17 10:54:08,478][32535] LearnerWorker_p0 finished initialization! [2023-03-17 10:54:08,478][32535] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:08,577][32548] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 10:54:08,578][32548] RunningMeanStd input shape: (1,) [2023-03-17 10:54:08,586][32548] ConvEncoder: input_channels=3 [2023-03-17 10:54:08,657][32548] Conv encoder output size: 512 [2023-03-17 10:54:08,657][32548] Policy head output size: 512 [2023-03-17 10:54:10,077][24380] Inference worker 0-0 is ready! [2023-03-17 10:54:10,079][24380] All inference workers are ready! Signal rollout workers to start! [2023-03-17 10:54:10,106][32549] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,106][32569] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,111][32572] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,111][32550] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,111][32571] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,111][32567] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,112][32568] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,112][32570] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:10,368][32569] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,368][32567] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,368][32550] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,369][32568] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,395][32549] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,580][32550] Decorrelating experience for 32 frames... [2023-03-17 10:54:10,586][32567] Decorrelating experience for 32 frames... [2023-03-17 10:54:10,592][32569] Decorrelating experience for 32 frames... [2023-03-17 10:54:10,862][32568] Decorrelating experience for 32 frames... [2023-03-17 10:54:10,879][32571] Decorrelating experience for 0 frames... [2023-03-17 10:54:10,880][32567] Decorrelating experience for 64 frames... [2023-03-17 10:54:10,921][32549] Decorrelating experience for 32 frames... [2023-03-17 10:54:10,980][32569] Decorrelating experience for 64 frames... [2023-03-17 10:54:11,112][32572] Decorrelating experience for 0 frames... [2023-03-17 10:54:11,122][32571] Decorrelating experience for 32 frames... [2023-03-17 10:54:11,128][32568] Decorrelating experience for 64 frames... [2023-03-17 10:54:11,154][32550] Decorrelating experience for 64 frames... [2023-03-17 10:54:11,215][32567] Decorrelating experience for 96 frames... [2023-03-17 10:54:11,347][32569] Decorrelating experience for 96 frames... [2023-03-17 10:54:11,396][32571] Decorrelating experience for 64 frames... [2023-03-17 10:54:11,428][32568] Decorrelating experience for 96 frames... [2023-03-17 10:54:11,430][32572] Decorrelating experience for 32 frames... [2023-03-17 10:54:11,475][32550] Decorrelating experience for 96 frames... [2023-03-17 10:54:11,640][32570] Decorrelating experience for 0 frames... [2023-03-17 10:54:11,659][32549] Decorrelating experience for 64 frames... [2023-03-17 10:54:11,690][32571] Decorrelating experience for 96 frames... [2023-03-17 10:54:11,893][32570] Decorrelating experience for 32 frames... [2023-03-17 10:54:11,952][32572] Decorrelating experience for 64 frames... [2023-03-17 10:54:12,005][32549] Decorrelating experience for 96 frames... [2023-03-17 10:54:12,218][32570] Decorrelating experience for 64 frames... [2023-03-17 10:54:12,333][32572] Decorrelating experience for 96 frames... [2023-03-17 10:54:12,422][32535] Signal inference workers to stop experience collection... [2023-03-17 10:54:12,434][32548] InferenceWorker_p0-w0: stopping experience collection [2023-03-17 10:54:12,554][32570] Decorrelating experience for 96 frames... [2023-03-17 10:54:12,902][24380] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-17 10:54:12,904][24380] Avg episode reward: [(0, '2.711')] [2023-03-17 10:54:13,106][32535] Signal inference workers to resume experience collection... [2023-03-17 10:54:13,107][32548] InferenceWorker_p0-w0: resuming experience collection [2023-03-17 10:54:15,446][32548] Updated weights for policy 0, policy_version 10 (0.0263) [2023-03-17 10:54:17,635][32548] Updated weights for policy 0, policy_version 20 (0.0007) [2023-03-17 10:54:17,902][24380] Fps is (10 sec: 17203.9, 60 sec: 17203.9, 300 sec: 17203.9). Total num frames: 86016. Throughput: 0: 2777.3. Samples: 13886. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0) [2023-03-17 10:54:17,903][24380] Avg episode reward: [(0, '4.460')] [2023-03-17 10:54:19,874][32548] Updated weights for policy 0, policy_version 30 (0.0008) [2023-03-17 10:54:22,150][32548] Updated weights for policy 0, policy_version 40 (0.0008) [2023-03-17 10:54:22,902][24380] Fps is (10 sec: 17612.5, 60 sec: 17612.5, 300 sec: 17612.5). Total num frames: 176128. Throughput: 0: 4135.1. Samples: 41352. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0) [2023-03-17 10:54:22,904][24380] Avg episode reward: [(0, '4.468')] [2023-03-17 10:54:22,912][32535] Saving new best policy, reward=4.468! [2023-03-17 10:54:23,494][24380] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 24380], exiting... [2023-03-17 10:54:23,497][32535] Stopping Batcher_0... [2023-03-17 10:54:23,498][32535] Loop batcher_evt_loop terminating... [2023-03-17 10:54:23,497][24380] Runner profile tree view: main_loop: 18.2648 [2023-03-17 10:54:23,499][32535] Saving /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000045_184320.pth... [2023-03-17 10:54:23,499][24380] Collected {0: 184320}, FPS: 10091.5 [2023-03-17 10:54:23,505][32549] Stopping RolloutWorker_w0... [2023-03-17 10:54:23,506][32569] Stopping RolloutWorker_w4... [2023-03-17 10:54:23,506][32549] Loop rollout_proc0_evt_loop terminating... [2023-03-17 10:54:23,506][32569] Loop rollout_proc4_evt_loop terminating... [2023-03-17 10:54:23,509][32570] Stopping RolloutWorker_w5... [2023-03-17 10:54:23,509][32568] Stopping RolloutWorker_w1... [2023-03-17 10:54:23,510][32570] Loop rollout_proc5_evt_loop terminating... [2023-03-17 10:54:23,510][32568] Loop rollout_proc1_evt_loop terminating... [2023-03-17 10:54:23,510][32548] Weights refcount: 2 0 [2023-03-17 10:54:23,511][32548] Stopping InferenceWorker_p0-w0... [2023-03-17 10:54:23,512][32548] Loop inference_proc0-0_evt_loop terminating... [2023-03-17 10:54:23,512][32550] Stopping RolloutWorker_w2... [2023-03-17 10:54:23,513][32550] Loop rollout_proc2_evt_loop terminating... [2023-03-17 10:54:23,515][32571] Stopping RolloutWorker_w6... [2023-03-17 10:54:23,516][32571] Loop rollout_proc6_evt_loop terminating... [2023-03-17 10:54:23,516][32567] Stopping RolloutWorker_w3... [2023-03-17 10:54:23,517][32567] Loop rollout_proc3_evt_loop terminating... [2023-03-17 10:54:23,525][32572] Stopping RolloutWorker_w7... [2023-03-17 10:54:23,525][32572] Loop rollout_proc7_evt_loop terminating... [2023-03-17 10:54:23,561][32535] Stopping LearnerWorker_p0... [2023-03-17 10:54:23,562][32535] Loop learner_proc0_evt_loop terminating... [2023-03-17 10:54:29,677][24380] Environment doom_basic already registered, overwriting... [2023-03-17 10:54:29,680][24380] Environment doom_two_colors_easy already registered, overwriting... [2023-03-17 10:54:29,682][24380] Environment doom_two_colors_hard already registered, overwriting... [2023-03-17 10:54:29,684][24380] Environment doom_dm already registered, overwriting... [2023-03-17 10:54:29,686][24380] Environment doom_dwango5 already registered, overwriting... [2023-03-17 10:54:29,687][24380] Environment doom_my_way_home_flat_actions already registered, overwriting... [2023-03-17 10:54:29,689][24380] Environment doom_defend_the_center_flat_actions already registered, overwriting... [2023-03-17 10:54:29,690][24380] Environment doom_my_way_home already registered, overwriting... [2023-03-17 10:54:29,692][24380] Environment doom_deadly_corridor already registered, overwriting... [2023-03-17 10:54:29,693][24380] Environment doom_defend_the_center already registered, overwriting... [2023-03-17 10:54:29,694][24380] Environment doom_defend_the_line already registered, overwriting... [2023-03-17 10:54:29,695][24380] Environment doom_health_gathering already registered, overwriting... [2023-03-17 10:54:29,695][24380] Environment doom_health_gathering_supreme already registered, overwriting... [2023-03-17 10:54:29,696][24380] Environment doom_battle already registered, overwriting... [2023-03-17 10:54:29,698][24380] Environment doom_battle2 already registered, overwriting... [2023-03-17 10:54:29,699][24380] Environment doom_duel_bots already registered, overwriting... [2023-03-17 10:54:29,699][24380] Environment doom_deathmatch_bots already registered, overwriting... [2023-03-17 10:54:29,701][24380] Environment doom_duel already registered, overwriting... [2023-03-17 10:54:29,701][24380] Environment doom_deathmatch_full already registered, overwriting... [2023-03-17 10:54:29,702][24380] Environment doom_benchmark already registered, overwriting... [2023-03-17 10:54:29,703][24380] register_encoder_factory: <function make_vizdoom_encoder at 0x7f2990bd61f0> [2023-03-17 10:54:29,721][24380] Loading existing experiment configuration from /home/ckahmann/RL/train_dir/default_experiment/config.json [2023-03-17 10:54:29,722][24380] Overriding arg 'num_workers' with value 16 passed from command line [2023-03-17 10:54:29,729][24380] Experiment dir /home/ckahmann/RL/train_dir/default_experiment already exists! [2023-03-17 10:54:29,730][24380] Resuming existing experiment from /home/ckahmann/RL/train_dir/default_experiment... [2023-03-17 10:54:29,731][24380] Weights and Biases integration disabled [2023-03-17 10:54:29,863][24380] Environment var CUDA_VISIBLE_DEVICES is 0,1 [2023-03-17 10:54:31,128][24380] Starting experiment with the following configuration: help=False algo=APPO env=doom_health_gathering_supreme experiment=default_experiment train_dir=/home/ckahmann/RL/train_dir restart_behavior=resume device=gpu seed=None num_policies=1 async_rl=True serial_mode=False batched_sampling=False num_batches_to_accumulate=2 worker_num_splits=2 policy_workers_per_policy=1 max_policy_lag=1000 num_workers=16 num_envs_per_worker=4 batch_size=1024 num_batches_per_epoch=1 num_epochs=1 rollout=32 recurrence=32 shuffle_minibatches=False gamma=0.99 reward_scale=1.0 reward_clip=1000.0 value_bootstrap=False normalize_returns=True exploration_loss_coeff=0.001 value_loss_coeff=0.5 kl_loss_coeff=0.0 exploration_loss=symmetric_kl gae_lambda=0.95 ppo_clip_ratio=0.1 ppo_clip_value=0.2 with_vtrace=False vtrace_rho=1.0 vtrace_c=1.0 optimizer=adam adam_eps=1e-06 adam_beta1=0.9 adam_beta2=0.999 max_grad_norm=4.0 learning_rate=0.0001 lr_schedule=constant lr_schedule_kl_threshold=0.008 lr_adaptive_min=1e-06 lr_adaptive_max=0.01 obs_subtract_mean=0.0 obs_scale=255.0 normalize_input=True normalize_input_keys=None decorrelate_experience_max_seconds=0 decorrelate_envs_on_one_worker=True actor_worker_gpus=[] set_workers_cpu_affinity=True force_envs_single_thread=False default_niceness=0 log_to_file=True experiment_summaries_interval=10 flush_summaries_interval=30 stats_avg=100 summaries_use_frameskip=True heartbeat_interval=20 heartbeat_reporting_interval=600 train_for_env_steps=4000000 train_for_seconds=10000000000 save_every_sec=120 keep_checkpoints=2 load_checkpoint_kind=latest save_milestones_sec=-1 save_best_every_sec=5 save_best_metric=reward save_best_after=100000 benchmark=False encoder_mlp_layers=[512, 512] encoder_conv_architecture=convnet_simple encoder_conv_mlp_layers=[512] use_rnn=True rnn_size=512 rnn_type=gru rnn_num_layers=1 decoder_mlp_layers=[] nonlinearity=elu policy_initialization=orthogonal policy_init_gain=1.0 actor_critic_share_weights=True adaptive_stddev=True continuous_tanh_scale=0.0 initial_stddev=1.0 use_env_info_cache=False env_gpu_actions=False env_gpu_observations=True env_frameskip=4 env_framestack=1 pixel_format=CHW use_record_episode_statistics=False with_wandb=False wandb_user=None wandb_project=sample_factory wandb_group=None wandb_job_type=SF wandb_tags=[] with_pbt=False pbt_mix_policies_in_one_env=True pbt_period_env_steps=5000000 pbt_start_mutation=20000000 pbt_replace_fraction=0.3 pbt_mutation_rate=0.15 pbt_replace_reward_gap=0.1 pbt_replace_reward_gap_absolute=1e-06 pbt_optimize_gamma=False pbt_target_objective=true_objective pbt_perturb_min=1.1 pbt_perturb_max=1.5 num_agents=-1 num_humans=0 num_bots=-1 start_bot_difficulty=None timelimit=None res_w=128 res_h=72 wide_aspect_ratio=False eval_env_frameskip=1 fps=35 command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000 cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000} git_hash=unknown git_repo_name=not a git repository [2023-03-17 10:54:31,130][24380] Saving configuration to /home/ckahmann/RL/train_dir/default_experiment/config.json... [2023-03-17 10:54:31,132][24380] Rollout worker 0 uses device cpu [2023-03-17 10:54:31,132][24380] Rollout worker 1 uses device cpu [2023-03-17 10:54:31,133][24380] Rollout worker 2 uses device cpu [2023-03-17 10:54:31,134][24380] Rollout worker 3 uses device cpu [2023-03-17 10:54:31,134][24380] Rollout worker 4 uses device cpu [2023-03-17 10:54:31,135][24380] Rollout worker 5 uses device cpu [2023-03-17 10:54:31,136][24380] Rollout worker 6 uses device cpu [2023-03-17 10:54:31,137][24380] Rollout worker 7 uses device cpu [2023-03-17 10:54:31,137][24380] Rollout worker 8 uses device cpu [2023-03-17 10:54:31,138][24380] Rollout worker 9 uses device cpu [2023-03-17 10:54:31,139][24380] Rollout worker 10 uses device cpu [2023-03-17 10:54:31,139][24380] Rollout worker 11 uses device cpu [2023-03-17 10:54:31,140][24380] Rollout worker 12 uses device cpu [2023-03-17 10:54:31,141][24380] Rollout worker 13 uses device cpu [2023-03-17 10:54:31,141][24380] Rollout worker 14 uses device cpu [2023-03-17 10:54:31,142][24380] Rollout worker 15 uses device cpu [2023-03-17 10:54:31,206][24380] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:31,207][24380] InferenceWorker_p0-w0: min num requests: 5 [2023-03-17 10:54:31,243][24380] Starting all processes... [2023-03-17 10:54:31,244][24380] Starting process learner_proc0 [2023-03-17 10:54:31,297][24380] Starting all processes... [2023-03-17 10:54:31,305][24380] Starting process inference_proc0-0 [2023-03-17 10:54:31,306][24380] Starting process rollout_proc0 [2023-03-17 10:54:31,306][24380] Starting process rollout_proc1 [2023-03-17 10:54:31,307][24380] Starting process rollout_proc2 [2023-03-17 10:54:31,307][24380] Starting process rollout_proc3 [2023-03-17 10:54:31,307][24380] Starting process rollout_proc4 [2023-03-17 10:54:31,308][24380] Starting process rollout_proc5 [2023-03-17 10:54:31,308][24380] Starting process rollout_proc6 [2023-03-17 10:54:31,309][24380] Starting process rollout_proc7 [2023-03-17 10:54:31,310][24380] Starting process rollout_proc8 [2023-03-17 10:54:31,310][24380] Starting process rollout_proc9 [2023-03-17 10:54:31,311][24380] Starting process rollout_proc10 [2023-03-17 10:54:31,312][24380] Starting process rollout_proc11 [2023-03-17 10:54:31,312][24380] Starting process rollout_proc12 [2023-03-17 10:54:31,318][24380] Starting process rollout_proc13 [2023-03-17 10:54:31,318][24380] Starting process rollout_proc14 [2023-03-17 10:54:31,378][24380] Starting process rollout_proc15 [2023-03-17 10:54:33,386][01277] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:33,386][01277] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-03-17 10:54:33,400][01277] Num visible devices: 1 [2023-03-17 10:54:33,448][01301] Worker 1 uses CPU cores [1] [2023-03-17 10:54:33,448][01277] Starting seed is not provided [2023-03-17 10:54:33,448][01277] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:33,449][01277] Initializing actor-critic model on device cuda:0 [2023-03-17 10:54:33,449][01277] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 10:54:33,450][01277] RunningMeanStd input shape: (1,) [2023-03-17 10:54:33,466][01277] ConvEncoder: input_channels=3 [2023-03-17 10:54:33,524][01299] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:33,524][01299] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-03-17 10:54:33,536][01324] Worker 6 uses CPU cores [6] [2023-03-17 10:54:33,550][01299] Num visible devices: 1 [2023-03-17 10:54:33,552][01325] Worker 8 uses CPU cores [8] [2023-03-17 10:54:33,580][01300] Worker 0 uses CPU cores [0] [2023-03-17 10:54:33,596][01323] Worker 5 uses CPU cores [5] [2023-03-17 10:54:33,604][01321] Worker 4 uses CPU cores [4] [2023-03-17 10:54:33,648][01320] Worker 3 uses CPU cores [3] [2023-03-17 10:54:33,676][01328] Worker 10 uses CPU cores [10] [2023-03-17 10:54:33,685][01277] Conv encoder output size: 512 [2023-03-17 10:54:33,686][01277] Policy head output size: 512 [2023-03-17 10:54:33,696][01326] Worker 7 uses CPU cores [7] [2023-03-17 10:54:33,704][01277] Created Actor Critic model with architecture: [2023-03-17 10:54:33,704][01277] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-03-17 10:54:33,752][01319] Worker 2 uses CPU cores [2] [2023-03-17 10:54:33,775][01329] Worker 11 uses CPU cores [11] [2023-03-17 10:54:33,824][01335] Worker 13 uses CPU cores [13] [2023-03-17 10:54:33,840][01332] Worker 15 uses CPU cores [15] [2023-03-17 10:54:33,876][01327] Worker 9 uses CPU cores [9] [2023-03-17 10:54:33,990][01331] Worker 12 uses CPU cores [12] [2023-03-17 10:54:33,993][01334] Worker 14 uses CPU cores [14] [2023-03-17 10:54:35,256][01277] Using optimizer <class 'torch.optim.adam.Adam'> [2023-03-17 10:54:35,257][01277] Loading state from checkpoint /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000045_184320.pth... [2023-03-17 10:54:35,278][01277] Loading model from checkpoint [2023-03-17 10:54:35,281][01277] Loaded experiment state at self.train_step=45, self.env_steps=184320 [2023-03-17 10:54:35,281][01277] Initialized policy 0 weights for model version 45 [2023-03-17 10:54:35,283][01277] LearnerWorker_p0 finished initialization! [2023-03-17 10:54:35,283][01277] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-03-17 10:54:35,387][01299] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 10:54:35,388][01299] RunningMeanStd input shape: (1,) [2023-03-17 10:54:35,396][01299] ConvEncoder: input_channels=3 [2023-03-17 10:54:35,467][01299] Conv encoder output size: 512 [2023-03-17 10:54:35,467][01299] Policy head output size: 512 [2023-03-17 10:54:36,963][24380] Inference worker 0-0 is ready! [2023-03-17 10:54:36,965][24380] All inference workers are ready! Signal rollout workers to start! [2023-03-17 10:54:36,987][01301] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,987][01327] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,998][01323] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,998][01334] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,998][01335] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,998][01324] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,999][01326] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:36,999][01320] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,000][01329] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,000][01319] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,001][01321] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,001][01331] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,001][01328] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,001][01300] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,002][01325] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,005][01332] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:54:37,233][01324] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,234][01319] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,235][01326] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,340][01301] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,340][01327] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,437][01319] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,470][01324] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,489][01335] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,496][01320] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,496][01321] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,544][01301] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,631][01334] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,692][01335] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,698][01321] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,717][01326] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,764][01327] Decorrelating experience for 32 frames... [2023-03-17 10:54:37,820][01332] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,851][01325] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,929][01335] Decorrelating experience for 64 frames... [2023-03-17 10:54:37,948][01328] Decorrelating experience for 0 frames... [2023-03-17 10:54:37,967][01320] Decorrelating experience for 32 frames... [2023-03-17 10:54:38,061][01301] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,067][01334] Decorrelating experience for 32 frames... [2023-03-17 10:54:38,153][01321] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,164][01324] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,252][01326] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,327][01320] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,354][01332] Decorrelating experience for 32 frames... [2023-03-17 10:54:38,378][01321] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,395][01319] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,447][01324] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,560][01334] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,571][01327] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,653][01335] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,654][01329] Decorrelating experience for 0 frames... [2023-03-17 10:54:38,705][01332] Decorrelating experience for 64 frames... [2023-03-17 10:54:38,716][01326] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,797][01301] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,805][01331] Decorrelating experience for 0 frames... [2023-03-17 10:54:38,913][01300] Decorrelating experience for 0 frames... [2023-03-17 10:54:38,982][01334] Decorrelating experience for 96 frames... [2023-03-17 10:54:38,992][01332] Decorrelating experience for 96 frames... [2023-03-17 10:54:39,016][01319] Decorrelating experience for 96 frames... [2023-03-17 10:54:39,059][01331] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,112][01328] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,244][01323] Decorrelating experience for 0 frames... [2023-03-17 10:54:39,278][01300] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,359][01329] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,411][01320] Decorrelating experience for 96 frames... [2023-03-17 10:54:39,431][01331] Decorrelating experience for 64 frames... [2023-03-17 10:54:39,459][01325] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,647][01300] Decorrelating experience for 64 frames... [2023-03-17 10:54:39,650][01277] Signal inference workers to stop experience collection... [2023-03-17 10:54:39,654][01299] InferenceWorker_p0-w0: stopping experience collection [2023-03-17 10:54:39,690][01323] Decorrelating experience for 32 frames... [2023-03-17 10:54:39,715][01327] Decorrelating experience for 96 frames... [2023-03-17 10:54:39,718][01328] Decorrelating experience for 64 frames... [2023-03-17 10:54:39,734][24380] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 184320. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-03-17 10:54:39,736][24380] Avg episode reward: [(0, '2.928')] [2023-03-17 10:54:39,808][01325] Decorrelating experience for 64 frames... [2023-03-17 10:54:39,927][01331] Decorrelating experience for 96 frames... [2023-03-17 10:54:39,930][01323] Decorrelating experience for 64 frames... [2023-03-17 10:54:39,947][01329] Decorrelating experience for 64 frames... [2023-03-17 10:54:40,043][01300] Decorrelating experience for 96 frames... [2023-03-17 10:54:40,080][01328] Decorrelating experience for 96 frames... [2023-03-17 10:54:40,145][01325] Decorrelating experience for 96 frames... [2023-03-17 10:54:40,156][01323] Decorrelating experience for 96 frames... [2023-03-17 10:54:40,287][01329] Decorrelating experience for 96 frames... [2023-03-17 10:54:40,479][01277] Signal inference workers to resume experience collection... [2023-03-17 10:54:40,480][01299] InferenceWorker_p0-w0: resuming experience collection [2023-03-17 10:54:42,279][01299] Updated weights for policy 0, policy_version 55 (0.0267) [2023-03-17 10:54:43,568][01299] Updated weights for policy 0, policy_version 65 (0.0010) [2023-03-17 10:54:44,734][24380] Fps is (10 sec: 23757.4, 60 sec: 23757.4, 300 sec: 23757.4). Total num frames: 303104. Throughput: 0: 3473.3. Samples: 17366. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:54:44,735][24380] Avg episode reward: [(0, '4.797')] [2023-03-17 10:54:44,843][01299] Updated weights for policy 0, policy_version 75 (0.0011) [2023-03-17 10:54:44,884][01277] Saving new best policy, reward=4.827! [2023-03-17 10:54:46,123][01299] Updated weights for policy 0, policy_version 85 (0.0010) [2023-03-17 10:54:47,363][01299] Updated weights for policy 0, policy_version 95 (0.0012) [2023-03-17 10:54:48,642][01299] Updated weights for policy 0, policy_version 105 (0.0010) [2023-03-17 10:54:49,734][24380] Fps is (10 sec: 27853.3, 60 sec: 27853.3, 300 sec: 27853.3). Total num frames: 462848. Throughput: 0: 6522.7. Samples: 65226. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:54:49,735][24380] Avg episode reward: [(0, '4.902')] [2023-03-17 10:54:49,920][01299] Updated weights for policy 0, policy_version 115 (0.0014) [2023-03-17 10:54:51,201][01299] Updated weights for policy 0, policy_version 125 (0.0012) [2023-03-17 10:54:51,201][24380] Heartbeat connected on Batcher_0 [2023-03-17 10:54:51,203][24380] Heartbeat connected on LearnerWorker_p0 [2023-03-17 10:54:51,211][24380] Heartbeat connected on InferenceWorker_p0-w0 [2023-03-17 10:54:51,212][24380] Heartbeat connected on RolloutWorker_w0 [2023-03-17 10:54:51,213][24380] Heartbeat connected on RolloutWorker_w1 [2023-03-17 10:54:51,219][24380] Heartbeat connected on RolloutWorker_w3 [2023-03-17 10:54:51,220][24380] Heartbeat connected on RolloutWorker_w2 [2023-03-17 10:54:51,222][24380] Heartbeat connected on RolloutWorker_w4 [2023-03-17 10:54:51,223][24380] Heartbeat connected on RolloutWorker_w5 [2023-03-17 10:54:51,225][24380] Heartbeat connected on RolloutWorker_w6 [2023-03-17 10:54:51,226][24380] Heartbeat connected on RolloutWorker_w7 [2023-03-17 10:54:51,232][24380] Heartbeat connected on RolloutWorker_w9 [2023-03-17 10:54:51,233][24380] Heartbeat connected on RolloutWorker_w8 [2023-03-17 10:54:51,234][24380] Heartbeat connected on RolloutWorker_w10 [2023-03-17 10:54:51,238][24380] Heartbeat connected on RolloutWorker_w12 [2023-03-17 10:54:51,239][24380] Heartbeat connected on RolloutWorker_w13 [2023-03-17 10:54:51,241][24380] Heartbeat connected on RolloutWorker_w11 [2023-03-17 10:54:51,241][24380] Heartbeat connected on RolloutWorker_w14 [2023-03-17 10:54:51,245][24380] Heartbeat connected on RolloutWorker_w15 [2023-03-17 10:54:52,537][01299] Updated weights for policy 0, policy_version 135 (0.0014) [2023-03-17 10:54:53,836][01299] Updated weights for policy 0, policy_version 145 (0.0010) [2023-03-17 10:54:54,734][24380] Fps is (10 sec: 31949.1, 60 sec: 29218.5, 300 sec: 29218.5). Total num frames: 622592. Throughput: 0: 5924.1. Samples: 88860. Policy #0 lag: (min: 0.0, avg: 1.2, max: 2.0) [2023-03-17 10:54:54,735][24380] Avg episode reward: [(0, '5.518')] [2023-03-17 10:54:54,881][01277] Saving new best policy, reward=5.635! [2023-03-17 10:54:55,142][01299] Updated weights for policy 0, policy_version 155 (0.0012) [2023-03-17 10:54:56,424][01299] Updated weights for policy 0, policy_version 165 (0.0010) [2023-03-17 10:54:57,687][01299] Updated weights for policy 0, policy_version 175 (0.0015) [2023-03-17 10:54:58,936][01299] Updated weights for policy 0, policy_version 185 (0.0009) [2023-03-17 10:54:59,734][24380] Fps is (10 sec: 31948.6, 60 sec: 29901.0, 300 sec: 29901.0). Total num frames: 782336. Throughput: 0: 6841.6. Samples: 136832. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:54:59,735][24380] Avg episode reward: [(0, '6.663')] [2023-03-17 10:54:59,864][01277] Saving new best policy, reward=6.669! [2023-03-17 10:55:00,226][01299] Updated weights for policy 0, policy_version 195 (0.0011) [2023-03-17 10:55:01,473][01299] Updated weights for policy 0, policy_version 205 (0.0011) [2023-03-17 10:55:02,736][01299] Updated weights for policy 0, policy_version 215 (0.0010) [2023-03-17 10:55:04,018][01299] Updated weights for policy 0, policy_version 225 (0.0013) [2023-03-17 10:55:04,734][24380] Fps is (10 sec: 31948.6, 60 sec: 30310.6, 300 sec: 30310.6). Total num frames: 942080. Throughput: 0: 7402.4. Samples: 185058. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:55:04,735][24380] Avg episode reward: [(0, '7.065')] [2023-03-17 10:55:04,863][01277] Saving new best policy, reward=7.036! [2023-03-17 10:55:05,319][01299] Updated weights for policy 0, policy_version 235 (0.0009) [2023-03-17 10:55:06,589][01299] Updated weights for policy 0, policy_version 245 (0.0010) [2023-03-17 10:55:07,846][01299] Updated weights for policy 0, policy_version 255 (0.0011) [2023-03-17 10:55:09,162][01299] Updated weights for policy 0, policy_version 265 (0.0010) [2023-03-17 10:55:09,734][24380] Fps is (10 sec: 31948.6, 60 sec: 30583.5, 300 sec: 30583.5). Total num frames: 1101824. Throughput: 0: 6968.3. Samples: 209050. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:55:09,736][24380] Avg episode reward: [(0, '8.389')] [2023-03-17 10:55:09,863][01277] Saving new best policy, reward=8.525! [2023-03-17 10:55:10,439][01299] Updated weights for policy 0, policy_version 275 (0.0014) [2023-03-17 10:55:11,734][01299] Updated weights for policy 0, policy_version 285 (0.0010) [2023-03-17 10:55:13,008][01299] Updated weights for policy 0, policy_version 295 (0.0014) [2023-03-17 10:55:14,302][01299] Updated weights for policy 0, policy_version 305 (0.0012) [2023-03-17 10:55:14,734][24380] Fps is (10 sec: 31948.7, 60 sec: 30778.6, 300 sec: 30778.6). Total num frames: 1261568. Throughput: 0: 7341.9. Samples: 256964. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:55:14,735][24380] Avg episode reward: [(0, '10.328')] [2023-03-17 10:55:14,863][01277] Saving new best policy, reward=10.279! [2023-03-17 10:55:15,612][01299] Updated weights for policy 0, policy_version 315 (0.0011) [2023-03-17 10:55:16,888][01299] Updated weights for policy 0, policy_version 325 (0.0013) [2023-03-17 10:55:18,147][01299] Updated weights for policy 0, policy_version 335 (0.0010) [2023-03-17 10:55:19,395][01299] Updated weights for policy 0, policy_version 345 (0.0015) [2023-03-17 10:55:19,734][24380] Fps is (10 sec: 31949.0, 60 sec: 30924.9, 300 sec: 30924.9). Total num frames: 1421312. Throughput: 0: 7627.8. Samples: 305112. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:55:19,735][24380] Avg episode reward: [(0, '12.270')] [2023-03-17 10:55:19,863][01277] Saving new best policy, reward=12.489! [2023-03-17 10:55:20,693][01299] Updated weights for policy 0, policy_version 355 (0.0009) [2023-03-17 10:55:21,936][01299] Updated weights for policy 0, policy_version 365 (0.0013) [2023-03-17 10:55:23,234][01299] Updated weights for policy 0, policy_version 375 (0.0016) [2023-03-17 10:55:24,533][01299] Updated weights for policy 0, policy_version 385 (0.0013) [2023-03-17 10:55:24,735][24380] Fps is (10 sec: 31947.2, 60 sec: 31038.3, 300 sec: 31038.3). Total num frames: 1581056. Throughput: 0: 7309.9. Samples: 328948. Policy #0 lag: (min: 0.0, avg: 1.1, max: 2.0) [2023-03-17 10:55:24,736][24380] Avg episode reward: [(0, '12.939')] [2023-03-17 10:55:24,863][01277] Saving new best policy, reward=13.697! [2023-03-17 10:55:25,807][01299] Updated weights for policy 0, policy_version 395 (0.0011) [2023-03-17 10:55:27,094][01299] Updated weights for policy 0, policy_version 405 (0.0013) [2023-03-17 10:55:28,354][01299] Updated weights for policy 0, policy_version 415 (0.0010) [2023-03-17 10:55:29,639][01299] Updated weights for policy 0, policy_version 425 (0.0011) [2023-03-17 10:55:29,734][24380] Fps is (10 sec: 31949.0, 60 sec: 31129.7, 300 sec: 31129.7). Total num frames: 1740800. Throughput: 0: 7994.3. Samples: 377110. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:55:29,735][24380] Avg episode reward: [(0, '13.684')] [2023-03-17 10:55:30,934][01299] Updated weights for policy 0, policy_version 435 (0.0016) [2023-03-17 10:55:32,233][01299] Updated weights for policy 0, policy_version 445 (0.0011) [2023-03-17 10:55:33,489][01299] Updated weights for policy 0, policy_version 455 (0.0011) [2023-03-17 10:55:34,734][24380] Fps is (10 sec: 31950.5, 60 sec: 31204.2, 300 sec: 31204.2). Total num frames: 1900544. Throughput: 0: 8000.2. Samples: 425234. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-17 10:55:34,735][24380] Avg episode reward: [(0, '16.289')] [2023-03-17 10:55:34,772][01299] Updated weights for policy 0, policy_version 465 (0.0012) [2023-03-17 10:55:34,863][01277] Saving new best policy, reward=16.870! [2023-03-17 10:55:36,008][01299] Updated weights for policy 0, policy_version 475 (0.0013) [2023-03-17 10:55:37,281][01299] Updated weights for policy 0, policy_version 485 (0.0009) [2023-03-17 10:55:38,525][01299] Updated weights for policy 0, policy_version 495 (0.0011) [2023-03-17 10:55:39,734][24380] Fps is (10 sec: 32358.4, 60 sec: 31334.5, 300 sec: 31334.5). Total num frames: 2064384. Throughput: 0: 8013.5. Samples: 449468. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-17 10:55:39,735][24380] Avg episode reward: [(0, '18.133')] [2023-03-17 10:55:39,804][01299] Updated weights for policy 0, policy_version 505 (0.0010) [2023-03-17 10:55:39,863][01277] Saving new best policy, reward=17.945! [2023-03-17 10:55:41,090][01299] Updated weights for policy 0, policy_version 515 (0.0010) [2023-03-17 10:55:42,364][01299] Updated weights for policy 0, policy_version 525 (0.0011) [2023-03-17 10:55:43,627][01299] Updated weights for policy 0, policy_version 535 (0.0012) [2023-03-17 10:55:44,734][24380] Fps is (10 sec: 32358.4, 60 sec: 32017.1, 300 sec: 31381.7). Total num frames: 2224128. Throughput: 0: 8018.6. Samples: 497668. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:55:44,735][24380] Avg episode reward: [(0, '17.323')] [2023-03-17 10:55:44,892][01299] Updated weights for policy 0, policy_version 545 (0.0012) [2023-03-17 10:55:46,183][01299] Updated weights for policy 0, policy_version 555 (0.0011) [2023-03-17 10:55:47,442][01299] Updated weights for policy 0, policy_version 565 (0.0015) [2023-03-17 10:55:48,670][01299] Updated weights for policy 0, policy_version 575 (0.0009) [2023-03-17 10:55:49,734][24380] Fps is (10 sec: 32358.2, 60 sec: 32085.3, 300 sec: 31480.7). Total num frames: 2387968. Throughput: 0: 8031.5. Samples: 546474. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-17 10:55:49,735][24380] Avg episode reward: [(0, '18.752')] [2023-03-17 10:55:49,863][01277] Saving new best policy, reward=18.918! [2023-03-17 10:55:49,969][01299] Updated weights for policy 0, policy_version 585 (0.0011) [2023-03-17 10:55:51,171][01299] Updated weights for policy 0, policy_version 595 (0.0010) [2023-03-17 10:55:52,434][01299] Updated weights for policy 0, policy_version 605 (0.0009) [2023-03-17 10:55:53,704][01299] Updated weights for policy 0, policy_version 615 (0.0012) [2023-03-17 10:55:54,734][24380] Fps is (10 sec: 32767.9, 60 sec: 32153.6, 300 sec: 31566.6). Total num frames: 2551808. Throughput: 0: 8037.4. Samples: 570730. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:55:54,735][24380] Avg episode reward: [(0, '17.902')] [2023-03-17 10:55:54,984][01299] Updated weights for policy 0, policy_version 625 (0.0010) [2023-03-17 10:55:56,291][01299] Updated weights for policy 0, policy_version 635 (0.0012) [2023-03-17 10:55:57,564][01299] Updated weights for policy 0, policy_version 645 (0.0013) [2023-03-17 10:55:58,843][01299] Updated weights for policy 0, policy_version 655 (0.0014) [2023-03-17 10:55:59,734][24380] Fps is (10 sec: 31949.0, 60 sec: 32085.4, 300 sec: 31539.3). Total num frames: 2707456. Throughput: 0: 8041.9. Samples: 618848. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:55:59,735][24380] Avg episode reward: [(0, '19.811')] [2023-03-17 10:55:59,863][01277] Saving new best policy, reward=19.975! [2023-03-17 10:56:00,116][01299] Updated weights for policy 0, policy_version 665 (0.0015) [2023-03-17 10:56:01,390][01299] Updated weights for policy 0, policy_version 675 (0.0010) [2023-03-17 10:56:02,654][01299] Updated weights for policy 0, policy_version 685 (0.0012) [2023-03-17 10:56:03,932][01299] Updated weights for policy 0, policy_version 695 (0.0012) [2023-03-17 10:56:04,734][24380] Fps is (10 sec: 31949.0, 60 sec: 32153.6, 300 sec: 31611.6). Total num frames: 2871296. Throughput: 0: 8045.4. Samples: 667156. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:56:04,735][24380] Avg episode reward: [(0, '20.363')] [2023-03-17 10:56:04,863][01277] Saving new best policy, reward=20.373! [2023-03-17 10:56:05,206][01299] Updated weights for policy 0, policy_version 705 (0.0009) [2023-03-17 10:56:06,462][01299] Updated weights for policy 0, policy_version 715 (0.0012) [2023-03-17 10:56:07,751][01299] Updated weights for policy 0, policy_version 725 (0.0013) [2023-03-17 10:56:09,058][01299] Updated weights for policy 0, policy_version 735 (0.0011) [2023-03-17 10:56:09,734][24380] Fps is (10 sec: 32358.4, 60 sec: 32153.7, 300 sec: 31630.3). Total num frames: 3031040. Throughput: 0: 8050.5. Samples: 691216. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0) [2023-03-17 10:56:09,735][24380] Avg episode reward: [(0, '22.248')] [2023-03-17 10:56:09,863][01277] Saving new best policy, reward=22.610! [2023-03-17 10:56:10,354][01299] Updated weights for policy 0, policy_version 745 (0.0014) [2023-03-17 10:56:11,597][01299] Updated weights for policy 0, policy_version 755 (0.0009) [2023-03-17 10:56:12,894][01299] Updated weights for policy 0, policy_version 765 (0.0010) [2023-03-17 10:56:14,193][01299] Updated weights for policy 0, policy_version 775 (0.0011) [2023-03-17 10:56:14,734][24380] Fps is (10 sec: 31948.8, 60 sec: 32153.6, 300 sec: 31647.1). Total num frames: 3190784. Throughput: 0: 8051.2. Samples: 739416. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0) [2023-03-17 10:56:14,735][24380] Avg episode reward: [(0, '22.320')] [2023-03-17 10:56:15,457][01299] Updated weights for policy 0, policy_version 785 (0.0011) [2023-03-17 10:56:16,726][01299] Updated weights for policy 0, policy_version 795 (0.0014) [2023-03-17 10:56:17,985][01299] Updated weights for policy 0, policy_version 805 (0.0010) [2023-03-17 10:56:19,278][01299] Updated weights for policy 0, policy_version 815 (0.0010) [2023-03-17 10:56:19,734][24380] Fps is (10 sec: 31948.6, 60 sec: 32153.6, 300 sec: 31662.1). Total num frames: 3350528. Throughput: 0: 8047.0. Samples: 787348. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-17 10:56:19,735][24380] Avg episode reward: [(0, '24.349')] [2023-03-17 10:56:19,863][01277] Saving new best policy, reward=24.642! [2023-03-17 10:56:20,556][01299] Updated weights for policy 0, policy_version 825 (0.0010) [2023-03-17 10:56:21,799][01299] Updated weights for policy 0, policy_version 835 (0.0012) [2023-03-17 10:56:23,077][01299] Updated weights for policy 0, policy_version 845 (0.0015) [2023-03-17 10:56:24,359][01299] Updated weights for policy 0, policy_version 855 (0.0012) [2023-03-17 10:56:24,734][24380] Fps is (10 sec: 32358.4, 60 sec: 32222.2, 300 sec: 31714.8). Total num frames: 3514368. Throughput: 0: 8045.7. Samples: 811526. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0) [2023-03-17 10:56:24,735][24380] Avg episode reward: [(0, '22.221')] [2023-03-17 10:56:25,633][01299] Updated weights for policy 0, policy_version 865 (0.0010) [2023-03-17 10:56:26,920][01299] Updated weights for policy 0, policy_version 875 (0.0011) [2023-03-17 10:56:28,186][01299] Updated weights for policy 0, policy_version 885 (0.0012) [2023-03-17 10:56:29,474][01299] Updated weights for policy 0, policy_version 895 (0.0010) [2023-03-17 10:56:29,739][24380] Fps is (10 sec: 32342.2, 60 sec: 32219.2, 300 sec: 31724.0). Total num frames: 3674112. Throughput: 0: 8048.2. Samples: 859876. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0) [2023-03-17 10:56:29,741][24380] Avg episode reward: [(0, '24.978')] [2023-03-17 10:56:29,746][01277] Saving /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000897_3674112.pth... [2023-03-17 10:56:29,863][01277] Saving new best policy, reward=26.247! [2023-03-17 10:56:30,766][01299] Updated weights for policy 0, policy_version 905 (0.0009) [2023-03-17 10:56:32,032][01299] Updated weights for policy 0, policy_version 915 (0.0010) [2023-03-17 10:56:33,354][01299] Updated weights for policy 0, policy_version 925 (0.0010) [2023-03-17 10:56:34,610][01299] Updated weights for policy 0, policy_version 935 (0.0012) [2023-03-17 10:56:34,734][24380] Fps is (10 sec: 31948.6, 60 sec: 32221.9, 300 sec: 31735.1). Total num frames: 3833856. Throughput: 0: 8028.9. Samples: 907774. Policy #0 lag: (min: 0.0, avg: 1.2, max: 2.0) [2023-03-17 10:56:34,735][24380] Avg episode reward: [(0, '24.749')] [2023-03-17 10:56:35,882][01299] Updated weights for policy 0, policy_version 945 (0.0013) [2023-03-17 10:56:37,173][01299] Updated weights for policy 0, policy_version 955 (0.0011) [2023-03-17 10:56:38,451][01299] Updated weights for policy 0, policy_version 965 (0.0011) [2023-03-17 10:56:39,707][01299] Updated weights for policy 0, policy_version 975 (0.0012) [2023-03-17 10:56:39,734][24380] Fps is (10 sec: 31964.8, 60 sec: 32153.6, 300 sec: 31744.0). Total num frames: 3993600. Throughput: 0: 8021.1. Samples: 931680. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0) [2023-03-17 10:56:39,735][24380] Avg episode reward: [(0, '24.199')] [2023-03-17 10:56:40,085][01277] Stopping Batcher_0... [2023-03-17 10:56:40,086][01277] Loop batcher_evt_loop terminating... [2023-03-17 10:56:40,087][01277] Saving /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-03-17 10:56:40,085][24380] Component Batcher_0 stopped! [2023-03-17 10:56:40,096][01334] Stopping RolloutWorker_w14... [2023-03-17 10:56:40,097][01328] Stopping RolloutWorker_w10... [2023-03-17 10:56:40,097][01334] Loop rollout_proc14_evt_loop terminating... [2023-03-17 10:56:40,097][01328] Loop rollout_proc10_evt_loop terminating... [2023-03-17 10:56:40,097][01319] Stopping RolloutWorker_w2... [2023-03-17 10:56:40,097][24380] Component RolloutWorker_w14 stopped! [2023-03-17 10:56:40,098][01301] Stopping RolloutWorker_w1... [2023-03-17 10:56:40,098][01323] Stopping RolloutWorker_w5... [2023-03-17 10:56:40,099][01326] Stopping RolloutWorker_w7... [2023-03-17 10:56:40,098][01324] Stopping RolloutWorker_w6... [2023-03-17 10:56:40,099][01319] Loop rollout_proc2_evt_loop terminating... [2023-03-17 10:56:40,099][01301] Loop rollout_proc1_evt_loop terminating... [2023-03-17 10:56:40,099][01323] Loop rollout_proc5_evt_loop terminating... [2023-03-17 10:56:40,099][01332] Stopping RolloutWorker_w15... [2023-03-17 10:56:40,099][01326] Loop rollout_proc7_evt_loop terminating... [2023-03-17 10:56:40,099][01324] Loop rollout_proc6_evt_loop terminating... [2023-03-17 10:56:40,099][01332] Loop rollout_proc15_evt_loop terminating... [2023-03-17 10:56:40,099][01335] Stopping RolloutWorker_w13... [2023-03-17 10:56:40,100][01335] Loop rollout_proc13_evt_loop terminating... [2023-03-17 10:56:40,100][01325] Stopping RolloutWorker_w8... [2023-03-17 10:56:40,099][24380] Component RolloutWorker_w10 stopped! [2023-03-17 10:56:40,100][01321] Stopping RolloutWorker_w4... [2023-03-17 10:56:40,101][01320] Stopping RolloutWorker_w3... [2023-03-17 10:56:40,101][01325] Loop rollout_proc8_evt_loop terminating... [2023-03-17 10:56:40,101][01320] Loop rollout_proc3_evt_loop terminating... [2023-03-17 10:56:40,101][01321] Loop rollout_proc4_evt_loop terminating... [2023-03-17 10:56:40,101][01329] Stopping RolloutWorker_w11... [2023-03-17 10:56:40,102][24380] Component RolloutWorker_w2 stopped! [2023-03-17 10:56:40,103][24380] Component RolloutWorker_w1 stopped! [2023-03-17 10:56:40,104][24380] Component RolloutWorker_w6 stopped! [2023-03-17 10:56:40,105][24380] Component RolloutWorker_w5 stopped! [2023-03-17 10:56:40,106][24380] Component RolloutWorker_w7 stopped! [2023-03-17 10:56:40,107][24380] Component RolloutWorker_w15 stopped! [2023-03-17 10:56:40,108][24380] Component RolloutWorker_w13 stopped! [2023-03-17 10:56:40,109][01331] Stopping RolloutWorker_w12... [2023-03-17 10:56:40,109][24380] Component RolloutWorker_w8 stopped! [2023-03-17 10:56:40,109][01331] Loop rollout_proc12_evt_loop terminating... [2023-03-17 10:56:40,110][24380] Component RolloutWorker_w4 stopped! [2023-03-17 10:56:40,110][24380] Component RolloutWorker_w3 stopped! [2023-03-17 10:56:40,111][24380] Component RolloutWorker_w11 stopped! [2023-03-17 10:56:40,112][24380] Component RolloutWorker_w12 stopped! [2023-03-17 10:56:40,102][01329] Loop rollout_proc11_evt_loop terminating... [2023-03-17 10:56:40,116][01327] Stopping RolloutWorker_w9... [2023-03-17 10:56:40,116][01327] Loop rollout_proc9_evt_loop terminating... [2023-03-17 10:56:40,116][24380] Component RolloutWorker_w9 stopped! [2023-03-17 10:56:40,117][01300] Stopping RolloutWorker_w0... [2023-03-17 10:56:40,118][01300] Loop rollout_proc0_evt_loop terminating... [2023-03-17 10:56:40,117][24380] Component RolloutWorker_w0 stopped! [2023-03-17 10:56:40,126][01299] Weights refcount: 2 0 [2023-03-17 10:56:40,127][01299] Stopping InferenceWorker_p0-w0... [2023-03-17 10:56:40,128][01299] Loop inference_proc0-0_evt_loop terminating... [2023-03-17 10:56:40,128][24380] Component InferenceWorker_p0-w0 stopped! [2023-03-17 10:56:40,158][01277] Removing /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000045_184320.pth [2023-03-17 10:56:40,165][01277] Saving /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-03-17 10:56:40,243][01277] Stopping LearnerWorker_p0... [2023-03-17 10:56:40,243][01277] Loop learner_proc0_evt_loop terminating... [2023-03-17 10:56:40,243][24380] Component LearnerWorker_p0 stopped! [2023-03-17 10:56:40,245][24380] Waiting for process learner_proc0 to stop... [2023-03-17 10:56:40,965][24380] Waiting for process inference_proc0-0 to join... [2023-03-17 10:56:40,967][24380] Waiting for process rollout_proc0 to join... [2023-03-17 10:56:40,968][24380] Waiting for process rollout_proc1 to join... [2023-03-17 10:56:40,970][24380] Waiting for process rollout_proc2 to join... [2023-03-17 10:56:40,971][24380] Waiting for process rollout_proc3 to join... [2023-03-17 10:56:40,972][24380] Waiting for process rollout_proc4 to join... [2023-03-17 10:56:40,974][24380] Waiting for process rollout_proc5 to join... [2023-03-17 10:56:40,975][24380] Waiting for process rollout_proc6 to join... [2023-03-17 10:56:40,976][24380] Waiting for process rollout_proc7 to join... [2023-03-17 10:56:40,978][24380] Waiting for process rollout_proc8 to join... [2023-03-17 10:56:40,979][24380] Waiting for process rollout_proc9 to join... [2023-03-17 10:56:40,980][24380] Waiting for process rollout_proc10 to join... [2023-03-17 10:56:40,982][24380] Waiting for process rollout_proc11 to join... [2023-03-17 10:56:40,983][24380] Waiting for process rollout_proc12 to join... [2023-03-17 10:56:40,984][24380] Waiting for process rollout_proc13 to join... [2023-03-17 10:56:40,986][24380] Waiting for process rollout_proc14 to join... [2023-03-17 10:56:40,987][24380] Waiting for process rollout_proc15 to join... [2023-03-17 10:56:40,988][24380] Batcher 0 profile tree view: batching: 12.2211, releasing_batches: 0.0246 [2023-03-17 10:56:40,989][24380] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0001 wait_policy_total: 5.2569 update_model: 2.5986 weight_update: 0.0012 one_step: 0.0036 handle_policy_step: 107.7825 deserialize: 7.7872, stack: 0.7211, obs_to_device_normalize: 31.9304, forward: 37.9525, send_messages: 9.9044 prepare_outputs: 14.9006 to_cpu: 9.4684 [2023-03-17 10:56:40,990][24380] Learner 0 profile tree view: misc: 0.0056, prepare_batch: 7.4842 train: 28.2527 epoch_init: 0.0042, minibatch_init: 0.0061, losses_postprocess: 0.1527, kl_divergence: 0.1730, after_optimizer: 0.3012 calculate_losses: 8.7205 losses_init: 0.0027, forward_head: 0.7555, bptt_initial: 5.6775, tail: 0.4340, advantages_returns: 0.1187, losses: 0.6629 bptt: 0.9171 bptt_forward_core: 0.8796 update: 18.5538 clip: 0.8257 [2023-03-17 10:56:40,992][24380] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0611, enqueue_policy_requests: 4.1572, env_step: 51.2831, overhead: 4.9311, complete_rollouts: 0.1200 save_policy_outputs: 4.2128 split_output_tensors: 2.0315 [2023-03-17 10:56:40,993][24380] RolloutWorker_w15 profile tree view: wait_for_trajectories: 0.0640, enqueue_policy_requests: 4.2558, env_step: 53.0790, overhead: 5.1241, complete_rollouts: 0.1230 save_policy_outputs: 4.2865 split_output_tensors: 2.0872 [2023-03-17 10:56:40,995][24380] Loop Runner_EvtLoop terminating... [2023-03-17 10:56:40,996][24380] Runner profile tree view: main_loop: 129.7535 [2023-03-17 10:56:40,998][24380] Collected {0: 4005888}, FPS: 29452.5 [2023-03-17 10:58:47,379][24380] Loading existing experiment configuration from /home/ckahmann/RL/train_dir/default_experiment/config.json [2023-03-17 10:58:47,380][24380] Overriding arg 'num_workers' with value 1 passed from command line [2023-03-17 10:58:47,381][24380] Adding new argument 'no_render'=True that is not in the saved config file! [2023-03-17 10:58:47,381][24380] Adding new argument 'save_video'=True that is not in the saved config file! [2023-03-17 10:58:47,382][24380] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-03-17 10:58:47,382][24380] Adding new argument 'video_name'=None that is not in the saved config file! [2023-03-17 10:58:47,383][24380] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file! [2023-03-17 10:58:47,384][24380] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-03-17 10:58:47,384][24380] Adding new argument 'push_to_hub'=False that is not in the saved config file! [2023-03-17 10:58:47,385][24380] Adding new argument 'hf_repository'=None that is not in the saved config file! [2023-03-17 10:58:47,385][24380] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-03-17 10:58:47,386][24380] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-03-17 10:58:47,387][24380] Adding new argument 'train_script'=None that is not in the saved config file! [2023-03-17 10:58:47,387][24380] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-03-17 10:58:47,388][24380] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-03-17 10:58:47,404][24380] Doom resolution: 160x120, resize resolution: (128, 72) [2023-03-17 10:58:47,406][24380] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 10:58:47,407][24380] RunningMeanStd input shape: (1,) [2023-03-17 10:58:47,419][24380] ConvEncoder: input_channels=3 [2023-03-17 10:58:47,538][24380] Conv encoder output size: 512 [2023-03-17 10:58:47,539][24380] Policy head output size: 512 [2023-03-17 10:58:49,022][24380] Loading state from checkpoint /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-03-17 10:58:49,781][24380] Num frames 100... [2023-03-17 10:58:49,931][24380] Num frames 200... [2023-03-17 10:58:50,058][24380] Num frames 300... [2023-03-17 10:58:50,169][24380] Num frames 400... [2023-03-17 10:58:50,290][24380] Num frames 500... [2023-03-17 10:58:50,397][24380] Num frames 600... [2023-03-17 10:58:50,508][24380] Num frames 700... [2023-03-17 10:58:50,619][24380] Num frames 800... [2023-03-17 10:58:50,731][24380] Num frames 900... [2023-03-17 10:58:50,841][24380] Num frames 1000... [2023-03-17 10:58:50,956][24380] Num frames 1100... [2023-03-17 10:58:51,077][24380] Num frames 1200... [2023-03-17 10:58:51,193][24380] Avg episode rewards: #0: 27.480, true rewards: #0: 12.480 [2023-03-17 10:58:51,195][24380] Avg episode reward: 27.480, avg true_objective: 12.480 [2023-03-17 10:58:51,292][24380] Num frames 1300... [2023-03-17 10:58:51,422][24380] Num frames 1400... [2023-03-17 10:58:51,579][24380] Num frames 1500... [2023-03-17 10:58:51,702][24380] Num frames 1600... [2023-03-17 10:58:51,863][24380] Avg episode rewards: #0: 17.405, true rewards: #0: 8.405 [2023-03-17 10:58:51,865][24380] Avg episode reward: 17.405, avg true_objective: 8.405 [2023-03-17 10:58:51,906][24380] Num frames 1700... [2023-03-17 10:58:52,054][24380] Num frames 1800... [2023-03-17 10:58:52,167][24380] Num frames 1900... [2023-03-17 10:58:52,273][24380] Avg episode rewards: #0: 12.457, true rewards: #0: 6.457 [2023-03-17 10:58:52,275][24380] Avg episode reward: 12.457, avg true_objective: 6.457 [2023-03-17 10:58:52,380][24380] Num frames 2000... [2023-03-17 10:58:52,503][24380] Num frames 2100... [2023-03-17 10:58:52,627][24380] Num frames 2200... [2023-03-17 10:58:52,753][24380] Num frames 2300... [2023-03-17 10:58:52,874][24380] Num frames 2400... [2023-03-17 10:58:53,011][24380] Num frames 2500... [2023-03-17 10:58:53,176][24380] Num frames 2600... [2023-03-17 10:58:53,288][24380] Num frames 2700... [2023-03-17 10:58:53,369][24380] Num frames 2800... [2023-03-17 10:58:53,476][24380] Avg episode rewards: #0: 14.173, true rewards: #0: 7.172 [2023-03-17 10:58:53,478][24380] Avg episode reward: 14.173, avg true_objective: 7.172 [2023-03-17 10:58:53,523][24380] Num frames 2900... [2023-03-17 10:58:53,607][24380] Num frames 3000... [2023-03-17 10:58:53,690][24380] Num frames 3100... [2023-03-17 10:58:53,808][24380] Num frames 3200... [2023-03-17 10:58:53,936][24380] Num frames 3300... [2023-03-17 10:58:54,055][24380] Num frames 3400... [2023-03-17 10:58:54,190][24380] Num frames 3500... [2023-03-17 10:58:54,288][24380] Num frames 3600... [2023-03-17 10:58:54,368][24380] Num frames 3700... [2023-03-17 10:58:54,444][24380] Num frames 3800... [2023-03-17 10:58:54,520][24380] Num frames 3900... [2023-03-17 10:58:54,596][24380] Num frames 4000... [2023-03-17 10:58:54,674][24380] Num frames 4100... [2023-03-17 10:58:54,802][24380] Avg episode rewards: #0: 16.590, true rewards: #0: 8.390 [2023-03-17 10:58:54,803][24380] Avg episode reward: 16.590, avg true_objective: 8.390 [2023-03-17 10:58:54,816][24380] Num frames 4200... [2023-03-17 10:58:54,914][24380] Num frames 4300... [2023-03-17 10:58:54,995][24380] Num frames 4400... [2023-03-17 10:58:55,071][24380] Num frames 4500... [2023-03-17 10:58:55,147][24380] Num frames 4600... [2023-03-17 10:58:55,224][24380] Num frames 4700... [2023-03-17 10:58:55,301][24380] Num frames 4800... [2023-03-17 10:58:55,358][24380] Avg episode rewards: #0: 15.338, true rewards: #0: 8.005 [2023-03-17 10:58:55,359][24380] Avg episode reward: 15.338, avg true_objective: 8.005 [2023-03-17 10:58:55,457][24380] Num frames 4900... [2023-03-17 10:58:55,539][24380] Num frames 5000... [2023-03-17 10:58:55,621][24380] Num frames 5100... [2023-03-17 10:58:55,702][24380] Num frames 5200... [2023-03-17 10:58:55,786][24380] Num frames 5300... [2023-03-17 10:58:55,868][24380] Num frames 5400... [2023-03-17 10:58:55,950][24380] Num frames 5500... [2023-03-17 10:58:56,032][24380] Num frames 5600... [2023-03-17 10:58:56,115][24380] Num frames 5700... [2023-03-17 10:58:56,199][24380] Num frames 5800... [2023-03-17 10:58:56,328][24380] Num frames 5900... [2023-03-17 10:58:56,458][24380] Num frames 6000... [2023-03-17 10:58:56,592][24380] Num frames 6100... [2023-03-17 10:58:56,721][24380] Num frames 6200... [2023-03-17 10:58:56,860][24380] Num frames 6300... [2023-03-17 10:58:56,995][24380] Num frames 6400... [2023-03-17 10:58:57,127][24380] Num frames 6500... [2023-03-17 10:58:57,249][24380] Num frames 6600... [2023-03-17 10:58:57,333][24380] Num frames 6700... [2023-03-17 10:58:57,411][24380] Num frames 6800... [2023-03-17 10:58:57,489][24380] Num frames 6900... [2023-03-17 10:58:57,546][24380] Avg episode rewards: #0: 21.861, true rewards: #0: 9.861 [2023-03-17 10:58:57,547][24380] Avg episode reward: 21.861, avg true_objective: 9.861 [2023-03-17 10:58:57,644][24380] Num frames 7000... [2023-03-17 10:58:57,748][24380] Num frames 7100... [2023-03-17 10:58:57,876][24380] Num frames 7200... [2023-03-17 10:58:57,992][24380] Num frames 7300... [2023-03-17 10:58:58,072][24380] Avg episode rewards: #0: 19.899, true rewards: #0: 9.149 [2023-03-17 10:58:58,074][24380] Avg episode reward: 19.899, avg true_objective: 9.149 [2023-03-17 10:58:58,196][24380] Num frames 7400... [2023-03-17 10:58:58,399][24380] Num frames 7500... [2023-03-17 10:58:58,543][24380] Num frames 7600... [2023-03-17 10:58:58,673][24380] Num frames 7700... [2023-03-17 10:58:58,776][24380] Num frames 7800... [2023-03-17 10:58:58,908][24380] Num frames 7900... [2023-03-17 10:58:59,066][24380] Num frames 8000... [2023-03-17 10:58:59,182][24380] Num frames 8100... [2023-03-17 10:58:59,294][24380] Num frames 8200... [2023-03-17 10:58:59,427][24380] Num frames 8300... [2023-03-17 10:58:59,546][24380] Num frames 8400... [2023-03-17 10:58:59,665][24380] Num frames 8500... [2023-03-17 10:58:59,797][24380] Num frames 8600... [2023-03-17 10:58:59,917][24380] Num frames 8700... [2023-03-17 10:59:00,031][24380] Num frames 8800... [2023-03-17 10:59:00,161][24380] Num frames 8900... [2023-03-17 10:59:00,323][24380] Num frames 9000... [2023-03-17 10:59:00,458][24380] Num frames 9100... [2023-03-17 10:59:00,596][24380] Num frames 9200... [2023-03-17 10:59:00,665][24380] Avg episode rewards: #0: 22.674, true rewards: #0: 10.230 [2023-03-17 10:59:00,667][24380] Avg episode reward: 22.674, avg true_objective: 10.230 [2023-03-17 10:59:00,847][24380] Num frames 9300... [2023-03-17 10:59:00,983][24380] Num frames 9400... [2023-03-17 10:59:01,101][24380] Num frames 9500... [2023-03-17 10:59:01,238][24380] Num frames 9600... [2023-03-17 10:59:01,396][24380] Num frames 9700... [2023-03-17 10:59:01,527][24380] Num frames 9800... [2023-03-17 10:59:01,665][24380] Num frames 9900... [2023-03-17 10:59:01,806][24380] Num frames 10000... [2023-03-17 10:59:01,927][24380] Num frames 10100... [2023-03-17 10:59:02,057][24380] Num frames 10200... [2023-03-17 10:59:02,180][24380] Num frames 10300... [2023-03-17 10:59:02,343][24380] Num frames 10400... [2023-03-17 10:59:02,541][24380] Num frames 10500... [2023-03-17 10:59:02,701][24380] Avg episode rewards: #0: 23.768, true rewards: #0: 10.568 [2023-03-17 10:59:02,703][24380] Avg episode reward: 23.768, avg true_objective: 10.568 [2023-03-17 10:59:30,255][24380] Replay video saved to /home/ckahmann/RL/train_dir/default_experiment/replay.mp4! [2023-03-17 11:02:12,760][24380] Loading existing experiment configuration from /home/ckahmann/RL/train_dir/default_experiment/config.json [2023-03-17 11:02:12,761][24380] Overriding arg 'num_workers' with value 1 passed from command line [2023-03-17 11:02:12,762][24380] Adding new argument 'no_render'=True that is not in the saved config file! [2023-03-17 11:02:12,762][24380] Adding new argument 'save_video'=True that is not in the saved config file! [2023-03-17 11:02:12,763][24380] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-03-17 11:02:12,764][24380] Adding new argument 'video_name'=None that is not in the saved config file! [2023-03-17 11:02:12,764][24380] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2023-03-17 11:02:12,765][24380] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-03-17 11:02:12,766][24380] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2023-03-17 11:02:12,766][24380] Adding new argument 'hf_repository'='Christian90/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file! [2023-03-17 11:02:12,767][24380] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-03-17 11:02:12,767][24380] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-03-17 11:02:12,768][24380] Adding new argument 'train_script'=None that is not in the saved config file! [2023-03-17 11:02:12,769][24380] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-03-17 11:02:12,769][24380] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-03-17 11:02:12,788][24380] RunningMeanStd input shape: (3, 72, 128) [2023-03-17 11:02:12,790][24380] RunningMeanStd input shape: (1,) [2023-03-17 11:02:12,800][24380] ConvEncoder: input_channels=3 [2023-03-17 11:02:12,828][24380] Conv encoder output size: 512 [2023-03-17 11:02:12,829][24380] Policy head output size: 512 [2023-03-17 11:02:12,863][24380] Loading state from checkpoint /home/ckahmann/RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2023-03-17 11:02:13,294][24380] Num frames 100... [2023-03-17 11:02:13,426][24380] Num frames 200... [2023-03-17 11:02:13,543][24380] Num frames 300... [2023-03-17 11:02:13,650][24380] Num frames 400... [2023-03-17 11:02:13,770][24380] Num frames 500... [2023-03-17 11:02:13,905][24380] Num frames 600... [2023-03-17 11:02:14,026][24380] Num frames 700... [2023-03-17 11:02:14,133][24380] Num frames 800... [2023-03-17 11:02:14,262][24380] Avg episode rewards: #0: 20.640, true rewards: #0: 8.640 [2023-03-17 11:02:14,263][24380] Avg episode reward: 20.640, avg true_objective: 8.640 [2023-03-17 11:02:14,334][24380] Num frames 900... [2023-03-17 11:02:14,461][24380] Num frames 1000... [2023-03-17 11:02:14,598][24380] Num frames 1100... [2023-03-17 11:02:14,723][24380] Num frames 1200... [2023-03-17 11:02:14,888][24380] Num frames 1300... [2023-03-17 11:02:15,068][24380] Num frames 1400... [2023-03-17 11:02:15,252][24380] Num frames 1500... [2023-03-17 11:02:15,427][24380] Num frames 1600... [2023-03-17 11:02:15,554][24380] Num frames 1700... [2023-03-17 11:02:15,688][24380] Num frames 1800... [2023-03-17 11:02:15,828][24380] Num frames 1900... [2023-03-17 11:02:15,969][24380] Num frames 2000... [2023-03-17 11:02:16,097][24380] Num frames 2100... [2023-03-17 11:02:16,221][24380] Num frames 2200... [2023-03-17 11:02:16,361][24380] Num frames 2300... [2023-03-17 11:02:16,472][24380] Num frames 2400... [2023-03-17 11:02:16,599][24380] Num frames 2500... [2023-03-17 11:02:16,701][24380] Avg episode rewards: #0: 31.140, true rewards: #0: 12.640 [2023-03-17 11:02:16,703][24380] Avg episode reward: 31.140, avg true_objective: 12.640 [2023-03-17 11:02:16,836][24380] Num frames 2600... [2023-03-17 11:02:16,977][24380] Num frames 2700... [2023-03-17 11:02:17,108][24380] Num frames 2800... [2023-03-17 11:02:17,235][24380] Num frames 2900... [2023-03-17 11:02:17,353][24380] Num frames 3000... [2023-03-17 11:02:17,480][24380] Num frames 3100... [2023-03-17 11:02:17,601][24380] Num frames 3200... [2023-03-17 11:02:17,731][24380] Num frames 3300... [2023-03-17 11:02:17,850][24380] Num frames 3400... [2023-03-17 11:02:17,991][24380] Num frames 3500... [2023-03-17 11:02:18,135][24380] Num frames 3600... [2023-03-17 11:02:18,286][24380] Num frames 3700... [2023-03-17 11:02:18,405][24380] Num frames 3800... [2023-03-17 11:02:18,555][24380] Num frames 3900... [2023-03-17 11:02:18,677][24380] Num frames 4000... [2023-03-17 11:02:18,795][24380] Num frames 4100... [2023-03-17 11:02:18,932][24380] Num frames 4200... [2023-03-17 11:02:19,128][24380] Avg episode rewards: #0: 36.960, true rewards: #0: 14.293 [2023-03-17 11:02:19,130][24380] Avg episode reward: 36.960, avg true_objective: 14.293 [2023-03-17 11:02:19,160][24380] Num frames 4300... [2023-03-17 11:02:19,297][24380] Num frames 4400... [2023-03-17 11:02:19,439][24380] Num frames 4500... [2023-03-17 11:02:19,577][24380] Num frames 4600... [2023-03-17 11:02:19,698][24380] Num frames 4700... [2023-03-17 11:02:19,832][24380] Num frames 4800... [2023-03-17 11:02:19,884][24380] Avg episode rewards: #0: 29.750, true rewards: #0: 12.000 [2023-03-17 11:02:19,886][24380] Avg episode reward: 29.750, avg true_objective: 12.000 [2023-03-17 11:02:20,021][24380] Num frames 4900... [2023-03-17 11:02:20,140][24380] Num frames 5000... [2023-03-17 11:02:20,255][24380] Num frames 5100... [2023-03-17 11:02:20,373][24380] Num frames 5200... [2023-03-17 11:02:20,492][24380] Num frames 5300... [2023-03-17 11:02:20,635][24380] Num frames 5400... [2023-03-17 11:02:20,764][24380] Num frames 5500... [2023-03-17 11:02:20,892][24380] Num frames 5600... [2023-03-17 11:02:21,008][24380] Num frames 5700... [2023-03-17 11:02:21,126][24380] Avg episode rewards: #0: 28.088, true rewards: #0: 11.488 [2023-03-17 11:02:21,128][24380] Avg episode reward: 28.088, avg true_objective: 11.488 [2023-03-17 11:02:21,232][24380] Num frames 5800... [2023-03-17 11:02:21,376][24380] Num frames 5900... [2023-03-17 11:02:21,540][24380] Num frames 6000... [2023-03-17 11:02:21,661][24380] Num frames 6100... [2023-03-17 11:02:21,809][24380] Num frames 6200... [2023-03-17 11:02:21,940][24380] Num frames 6300... [2023-03-17 11:02:22,059][24380] Num frames 6400... [2023-03-17 11:02:22,172][24380] Num frames 6500... [2023-03-17 11:02:22,285][24380] Num frames 6600... [2023-03-17 11:02:22,414][24380] Num frames 6700... [2023-03-17 11:02:22,534][24380] Num frames 6800... [2023-03-17 11:02:22,647][24380] Num frames 6900... [2023-03-17 11:02:22,762][24380] Num frames 7000... [2023-03-17 11:02:22,885][24380] Num frames 7100... [2023-03-17 11:02:23,036][24380] Num frames 7200... [2023-03-17 11:02:23,152][24380] Num frames 7300... [2023-03-17 11:02:23,292][24380] Num frames 7400... [2023-03-17 11:02:23,418][24380] Num frames 7500... [2023-03-17 11:02:23,504][24380] Num frames 7600... [2023-03-17 11:02:23,589][24380] Num frames 7700... [2023-03-17 11:02:23,717][24380] Num frames 7800... [2023-03-17 11:02:23,830][24380] Avg episode rewards: #0: 32.406, true rewards: #0: 13.073 [2023-03-17 11:02:23,832][24380] Avg episode reward: 32.406, avg true_objective: 13.073 [2023-03-17 11:02:23,947][24380] Num frames 7900... [2023-03-17 11:02:24,092][24380] Num frames 8000... [2023-03-17 11:02:24,247][24380] Num frames 8100... [2023-03-17 11:02:24,367][24380] Num frames 8200... [2023-03-17 11:02:24,487][24380] Num frames 8300... [2023-03-17 11:02:24,609][24380] Num frames 8400... [2023-03-17 11:02:24,724][24380] Num frames 8500... [2023-03-17 11:02:24,835][24380] Num frames 8600... [2023-03-17 11:02:24,998][24380] Avg episode rewards: #0: 29.965, true rewards: #0: 12.394 [2023-03-17 11:02:25,000][24380] Avg episode reward: 29.965, avg true_objective: 12.394 [2023-03-17 11:02:25,050][24380] Num frames 8700... [2023-03-17 11:02:25,182][24380] Num frames 8800... [2023-03-17 11:02:25,289][24380] Num frames 8900... [2023-03-17 11:02:25,402][24380] Num frames 9000... [2023-03-17 11:02:25,569][24380] Num frames 9100... [2023-03-17 11:02:25,681][24380] Num frames 9200... [2023-03-17 11:02:25,829][24380] Num frames 9300... [2023-03-17 11:02:26,014][24380] Num frames 9400... [2023-03-17 11:02:26,142][24380] Num frames 9500... [2023-03-17 11:02:26,264][24380] Num frames 9600... [2023-03-17 11:02:26,370][24380] Avg episode rewards: #0: 28.929, true rewards: #0: 12.054 [2023-03-17 11:02:26,372][24380] Avg episode reward: 28.929, avg true_objective: 12.054 [2023-03-17 11:02:26,492][24380] Num frames 9700... [2023-03-17 11:02:26,650][24380] Num frames 9800... [2023-03-17 11:02:26,798][24380] Num frames 9900... [2023-03-17 11:02:26,914][24380] Num frames 10000... [2023-03-17 11:02:27,105][24380] Num frames 10100... [2023-03-17 11:02:27,295][24380] Num frames 10200... [2023-03-17 11:02:27,483][24380] Num frames 10300... [2023-03-17 11:02:27,662][24380] Num frames 10400... [2023-03-17 11:02:27,784][24380] Num frames 10500... [2023-03-17 11:02:27,902][24380] Num frames 10600... [2023-03-17 11:02:27,963][24380] Avg episode rewards: #0: 28.670, true rewards: #0: 11.781 [2023-03-17 11:02:27,965][24380] Avg episode reward: 28.670, avg true_objective: 11.781 [2023-03-17 11:02:28,112][24380] Num frames 10700... [2023-03-17 11:02:28,238][24380] Num frames 10800... [2023-03-17 11:02:28,364][24380] Num frames 10900... [2023-03-17 11:02:28,495][24380] Num frames 11000... [2023-03-17 11:02:28,621][24380] Num frames 11100... [2023-03-17 11:02:28,756][24380] Num frames 11200... [2023-03-17 11:02:28,887][24380] Num frames 11300... [2023-03-17 11:02:29,022][24380] Num frames 11400... [2023-03-17 11:02:29,149][24380] Num frames 11500... [2023-03-17 11:02:29,269][24380] Num frames 11600... [2023-03-17 11:02:29,429][24380] Avg episode rewards: #0: 28.480, true rewards: #0: 11.680 [2023-03-17 11:02:29,431][24380] Avg episode reward: 28.480, avg true_objective: 11.680 [2023-03-17 11:02:59,990][24380] Replay video saved to /home/ckahmann/RL/train_dir/default_experiment/replay.mp4! |