--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: whisper-large-v3-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.94 --- # whisper-large-v3-finetuned-gtzan This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.2657 - Accuracy: 0.94 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1646 | 0.5 | 28 | 1.8012 | 0.55 | | 1.0152 | 1.0 | 56 | 0.8618 | 0.79 | | 1.1129 | 1.49 | 84 | 0.7426 | 0.8 | | 0.8163 | 1.99 | 112 | 0.8078 | 0.75 | | 0.4374 | 2.49 | 140 | 0.6259 | 0.81 | | 0.4607 | 2.99 | 168 | 0.5424 | 0.83 | | 0.4225 | 3.48 | 196 | 0.3723 | 0.89 | | 0.1769 | 3.98 | 224 | 0.3517 | 0.9 | | 0.0927 | 4.48 | 252 | 0.3385 | 0.89 | | 0.0159 | 4.98 | 280 | 0.3985 | 0.88 | | 0.0119 | 5.48 | 308 | 0.4626 | 0.9 | | 0.029 | 5.97 | 336 | 0.4292 | 0.91 | | 0.0064 | 6.47 | 364 | 0.2710 | 0.93 | | 0.0057 | 6.97 | 392 | 0.2665 | 0.93 | | 0.0048 | 7.47 | 420 | 0.2784 | 0.93 | | 0.0049 | 7.96 | 448 | 0.2550 | 0.94 | | 0.0049 | 8.46 | 476 | 0.3011 | 0.94 | | 0.0044 | 8.96 | 504 | 0.2759 | 0.94 | | 0.0045 | 9.46 | 532 | 0.2661 | 0.94 | | 0.0048 | 9.96 | 560 | 0.2657 | 0.94 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1