--- language: en license: mit tags: - fundus - diabetic retinopathy - classification datasets: - APTOS - EYEPACS - IDRID - DDR library: timm model-index: - name: tf_efficientnet_b5 results: - task: type: image-classification dataset: name: EYEPACS type: EYEPACS metrics: - type: kappa value: 0.752630889415741 name: Quadratic Kappa - task: type: image-classification dataset: name: IDRID type: IDRID metrics: - type: kappa value: 0.6702436208724976 name: Quadratic Kappa - task: type: image-classification dataset: name: DDR type: DDR metrics: - type: kappa value: 0.7697291374206543 name: Quadratic Kappa --- # Fundus DR Grading [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com) [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html) [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/) ## Description This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.