---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: llm_train/test_out
results: []
datasets:
- CleverShovel/paper_reviews
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
bnb_config_kwargs:
llm_int8_has_fp16_weight: true
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: false
datasets:
- path: CleverShovel/paper_reviews
type: alpaca
dataset_prepared_path: CleverShovel/paper_reviews
val_set_size: 0.05
output_dir: ./llm_train/test_out
#using lora for lower cost
adapter: qlora
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
wandb_project: paper_review
wandb_entity:
wandb_watch:
wandb_name: base
wandb_log_model: checkpoint
gradient_accumulation_steps: 2
micro_batch_size: 5
max_steps: 300
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
float16: true
bf16: false
fp16: false
tf32: false
save_safetensors: true
save_steps: 100
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 100
xformers_attention:
flash_attention: true
warmup_ration: 0.05
evals_steps: 100
eval_table_size:
eval_table_max_new_tokens: 128
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
```
# llm_train/test_out
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0276
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 9
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0121 | 0.13 | 300 | 2.0276 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0