--- language: en license: apache-2.0 --- # CodeRosetta ## Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming ([📃Paper](https://arxiv.org/abs/2410.20527), [🔗Website](https://coderosetta.com/)). CodeRosetta is an EncoderDecoder translation model. It supports the translation of C++, CUDA, and Fortran. \ This version of the model is the base version of **C++-CUDA translation** without being fine-tuned. ### How to use ```python from transformers import AutoTokenizer, EncoderDecoderModel # Load the CodeRosetta model and tokenizer model = EncoderDecoderModel.from_pretrained('CodeRosetta/CodeRosetta_cpp_cuda_base') tokenizer = AutoTokenizer.from_pretrained('CodeRosetta/CodeRosetta_cpp_cuda_base') # Encode the input C++ Code input_cpp_code = "void add_100 ( int numElements , int * data ) { for ( int idx = 0 ; idx < numElements ; idx ++ ) { data [ idx ] += 100 ; } }" input_ids = tokenizer.encode(input_cpp_code, return_tensors="pt") # Set the start token to start_token = "" # If input is CUDA code, change the start token to decoder_start_token_id = tokenizer.convert_tokens_to_ids(start_token) # Generate the CUDA code output = model.generate( input_ids=input_ids, decoder_start_token_id=decoder_start_token_id, max_length=256 ) # Decode and print the generated output generated_code = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_code) ``` ### BibTeX ```bibtex @inproceedings{coderosetta:neurips:2024, title = {CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming}, author = {TehraniJamsaz, Ali and Bhattacharjee, Arijit and Chen, Le and Ahmed, Nesreen K and Yazdanbakhsh, Amir and Jannesari, Ali}, booktitle = {NeurIPS}, year = {2024}, }