|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for FLM.""" |
|
import os |
|
from shutil import copyfile |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
import re |
|
from transformers.convert_slow_tokenizer import import_protobuf |
|
from transformers import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
from transformers.tokenization_utils_base import TextInput |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": {}, |
|
"tokenizer_file": {}, |
|
} |
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"flm-tokenizer": 8192, |
|
} |
|
SPIECE_UNDERLINE = "▁" |
|
|
|
|
|
class FLMTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a FLM tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is |
|
no padding token in the original model. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
|
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
|
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
|
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add spaces between special tokens. |
|
|
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
pad_token=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
add_bos_token=False, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
spaces_between_special_tokens=False, |
|
**kwargs, |
|
): |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token |
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) |
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
spaces_between_special_tokens=spaces_between_special_tokens, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def unk_token_length(self): |
|
return len(self.sp_model.encode(str(self.unk_token))) |
|
|
|
|
|
def get_spm_processor(self, from_slow=False): |
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
with open(self.vocab_file, "rb") as f: |
|
sp_model = f.read() |
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") |
|
model = model_pb2.ModelProto.FromString(sp_model) |
|
normalizer_spec = model_pb2.NormalizerSpec() |
|
normalizer_spec.add_dummy_prefix = True |
|
model.normalizer_spec.MergeFrom(normalizer_spec) |
|
sp_model = model.SerializeToString() |
|
tokenizer.LoadFromSerializedProto(sp_model) |
|
return tokenizer |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def tokenize(self, text: TextInput, **kwargs) -> List[str]: |
|
""" |
|
Converts a string in a sequence of tokens, using the tokenizer. |
|
|
|
Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies |
|
(BPE/SentencePieces/WordPieces). Takes care of added tokens. |
|
|
|
Args: |
|
text (`str`): |
|
The sequence to be encoded. |
|
**kwargs (additional keyword arguments): |
|
Passed along to the model-specific `prepare_for_tokenization` preprocessing method. |
|
|
|
Returns: |
|
`List[str]`: The list of tokens. |
|
""" |
|
split_special_tokens = kwargs.pop("split_special_tokens", self.split_special_tokens) |
|
remove_dummy_prefix = kwargs.pop("remove_dummy_prefix", False) |
|
|
|
text, kwargs = self.prepare_for_tokenization(text, **kwargs) |
|
|
|
if kwargs: |
|
logger.warning(f"Keyword arguments {kwargs} not recognized.") |
|
|
|
if hasattr(self, "do_lower_case") and self.do_lower_case: |
|
|
|
escaped_special_toks = [re.escape(s_tok) for s_tok in (self.all_special_tokens)] |
|
escaped_special_toks += [ |
|
re.escape(s_tok.content) |
|
for s_tok in (self._added_tokens_decoder.values()) |
|
if not s_tok.special and s_tok.normalized |
|
] |
|
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)" |
|
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text) |
|
|
|
if split_special_tokens: |
|
no_split_token = [] |
|
tokens = [text] |
|
else: |
|
no_split_token = self._added_tokens_encoder.keys() |
|
|
|
tokens = self.tokens_trie.split(text) |
|
|
|
|
|
for i, token in enumerate(tokens): |
|
if token in no_split_token: |
|
tok_extended = self._added_tokens_decoder.get(self._added_tokens_encoder[token], None) |
|
left = tokens[i - 1] if i > 0 else None |
|
right = tokens[i + 1] if i < len(tokens) - 1 else None |
|
if isinstance(tok_extended, AddedToken): |
|
if tok_extended.rstrip and right: |
|
|
|
|
|
tokens[i + 1] = right.lstrip() |
|
|
|
if tok_extended.lstrip and left: |
|
tokens[i - 1] = left.rstrip() |
|
if tok_extended.single_word and left and left[-1] != " ": |
|
tokens[i - 1] += token |
|
tokens[i] = "" |
|
elif tok_extended.single_word and right and right[0] != " ": |
|
tokens[i + 1] = token + tokens[i + 1] |
|
tokens[i] = "" |
|
else: |
|
raise ValueError( |
|
f"{tok_extended} cannot be tokenized because it was not properly added" |
|
f" to the tokenizer. This means that it is not an `AddedToken` but a {type(tok_extended)}" |
|
) |
|
|
|
tokenized_text = [] |
|
for token in tokens: |
|
|
|
if not token: |
|
continue |
|
if token in no_split_token: |
|
tokenized_text.append(token) |
|
else: |
|
tokenized_text.extend(self._tokenize(token, remove_dummy_prefix=remove_dummy_prefix)) |
|
|
|
return tokenized_text |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Returns a tokenized string. |
|
|
|
We add a option to remove dummpy prefix during tokenization instead of changing the default behaviour of the sentencepiece tokenizer. |
|
This is useful when there're two tokenized sentences to be merged into one as the last one will have an extra dummy prefix which results in a |
|
inconsistant pattern. |
|
""" |
|
tokens = self.sp_model.encode(text, out_type=str) |
|
if text.startswith((SPIECE_UNDERLINE, " ")): |
|
return tokens |
|
if len(tokens) > 0 and kwargs.get("remove_dummy_prefix") is True: |
|
tokens[0] = tokens[0].replace(SPIECE_UNDERLINE, "", 1) |
|
return tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.IdToPiece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
current_sub_tokens = [] |
|
out_string = "" |
|
|
|
for i, token in enumerate(tokens): |
|
|
|
if token in self.all_special_tokens: |
|
|
|
|
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
|
|
current_sub_tokens = [] |
|
else: |
|
current_sub_tokens.append(token) |
|
|
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
return ( |
|
bos_token_id |
|
+ ([0] * len(token_ids_0)) |
|
+ eos_token_id |
|
+ bos_token_id |
|
+ ([0] * len(token_ids_1)) |
|
+ eos_token_id |
|
) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
if token_ids_1 is not None: |
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
return output |
|
|