Update README.md
Browse files
README.md
CHANGED
@@ -8,11 +8,14 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
# {
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -28,58 +31,12 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
35 |
|
36 |
|
37 |
-
|
38 |
-
## Usage (HuggingFace Transformers)
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
-
|
46 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
-
def mean_pooling(model_output, attention_mask):
|
48 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
-
|
52 |
-
|
53 |
-
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
-
|
56 |
-
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
-
|
60 |
-
# Tokenize sentences
|
61 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
-
|
63 |
-
# Compute token embeddings
|
64 |
-
with torch.no_grad():
|
65 |
-
model_output = model(**encoded_input)
|
66 |
-
|
67 |
-
# Perform pooling. In this case, mean pooling.
|
68 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
-
|
70 |
-
print("Sentence embeddings:")
|
71 |
-
print(sentence_embeddings)
|
72 |
-
```
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
## Evaluation Results
|
77 |
-
|
78 |
-
<!--- Describe how your model was evaluated -->
|
79 |
-
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
-
|
82 |
-
|
83 |
## Training
|
84 |
The model was trained with the parameters:
|
85 |
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# {GitHub Issues MPNet Sentence Transformer}
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model, specific for GitHub Issue data.
|
14 |
+
|
15 |
+
## Dataset
|
16 |
+
|
17 |
+
For training, we used the [NLBSE22 dataset](https://nlbse2022.github.io/tools/)
|
18 |
|
|
|
19 |
|
20 |
## Usage (Sentence-Transformers)
|
21 |
|
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
33 |
|
34 |
+
model = SentenceTransformer('Collab-uniba/github-issues-mpnet-st-e10')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
## Training
|
41 |
The model was trained with the parameters:
|
42 |
|