PeppoCola commited on
Commit
de6d637
1 Parent(s): 8bb5b0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -50
README.md CHANGED
@@ -8,11 +8,14 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
 
 
 
14
 
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -28,58 +31,12 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
36
 
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
- def mean_pooling(model_output, attention_mask):
48
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
-
52
-
53
- # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
-
56
- # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
-
60
- # Tokenize sentences
61
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
-
63
- # Compute token embeddings
64
- with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
  ## Training
84
  The model was trained with the parameters:
85
 
 
8
 
9
  ---
10
 
11
+ # {GitHub Issues MPNet Sentence Transformer}
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model, specific for GitHub Issue data.
14
+
15
+ ## Dataset
16
+
17
+ For training, we used the [NLBSE22 dataset](https://nlbse2022.github.io/tools/)
18
 
 
19
 
20
  ## Usage (Sentence-Transformers)
21
 
 
31
  from sentence_transformers import SentenceTransformer
32
  sentences = ["This is an example sentence", "Each sentence is converted"]
33
 
34
+ model = SentenceTransformer('Collab-uniba/github-issues-mpnet-st-e10')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
38
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ## Training
41
  The model was trained with the parameters:
42