File size: 1,788 Bytes
d2ec2cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
language:
- zh
license: apache-2.0
tags:
- mt5-small
- text2text-generation
- natural language understanding
- conversational system
- task-oriented dialog
datasets:
- ConvLab/crosswoz
metrics:
- Dialog acts Accuracy
- Dialog acts F1
model-index:
- name: mt5-small-nlu-all-crosswoz
results:
- task:
type: text2text-generation
name: natural language understanding
dataset:
type: ConvLab/crosswoz
name: CrossWOZ
split: test
revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
metrics:
- type: Dialog acts Accuracy
value: 84.0
name: Accuracy
- type: Dialog acts F1
value: 90.1
name: F1
widget:
- text: "user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。"
- text: "system: 抱歉,为您搜索了一些经济型酒店都没有健身房。其他类型的一些酒店行吗?比如北京贵都大酒店、北京京仪大酒店这些也是很好的,就是价格高了一些。"
inference:
parameters:
max_length: 100
---
# mt5-small-nlu-all-crosswoz
This model is a fine-tuned version of [mt5-small](https://huggingface.co/mt5-small) on [CrossWOZ](https://huggingface.co/datasets/ConvLab/crosswoz) both user and system utterances.
Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1 |