Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,58 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- dialogue state tracking
|
7 |
+
- task-oriented dialog
|
8 |
+
|
9 |
---
|
10 |
+
|
11 |
+
# roberta-base-trippy-dst-multiwoz21
|
12 |
+
|
13 |
+
This is a TripPy model trained on [MultiWOZ 2.1](https://github.com/budzianowski/multiwoz) for use in [ConvLab-3](https://github.com/ConvLab/ConvLab-3).
|
14 |
+
This model predicts informable slots, requestable slots, general actions and domain indicator slots.
|
15 |
+
Expected joint goal accuracy for MultiWOZ 2.1 is in the range of 55-56\%.
|
16 |
+
|
17 |
+
For information about TripPy DST, refer to [TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking](https://aclanthology.org/2020.sigdial-1.4/).
|
18 |
+
|
19 |
+
The training and evaluation code is available at the official [TripPy repository](https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public).
|
20 |
+
|
21 |
+
## Training procedure
|
22 |
+
|
23 |
+
The model was trained on MultiWOZ 2.1 data via supervised learning using the [TripPy codebase](https://gitlab.cs.uni-duesseldorf.de/general/dsml/trippy-public).
|
24 |
+
MultiWOZ 2.1 data was loaded via ConvLab-3's unified data format dataloader.
|
25 |
+
The pre-trained encoder is [RoBERTa](https://arxiv.org/abs/1907.11692) (base).
|
26 |
+
Fine-tuning the encoder and training the DST specific classification heads was conducted for 10 epochs.
|
27 |
+
|
28 |
+
### Training hyperparameters
|
29 |
+
|
30 |
+
```
|
31 |
+
python3 run_dst.py \
|
32 |
+
--task_name="unified" \
|
33 |
+
--model_type="roberta" \
|
34 |
+
--model_name_or_path="roberta-base" \
|
35 |
+
--dataset_config=dataset_config/unified_multiwoz21.json \
|
36 |
+
--do_lower_case \
|
37 |
+
--learning_rate=1e-4 \
|
38 |
+
--num_train_epochs=10 \
|
39 |
+
--max_seq_length=180 \
|
40 |
+
--per_gpu_train_batch_size=24 \
|
41 |
+
--per_gpu_eval_batch_size=32 \
|
42 |
+
--output_dir=results \
|
43 |
+
--save_epochs=2 \
|
44 |
+
--eval_all_checkpoints \
|
45 |
+
--logging_steps=10 \
|
46 |
+
--warmup_proportion=0.1 \
|
47 |
+
--adam_epsilon=1e-6 \
|
48 |
+
--weight_decay=0.01 \
|
49 |
+
--label_value_repetitions \
|
50 |
+
--swap_utterances \
|
51 |
+
--append_history \
|
52 |
+
--use_history_labels \
|
53 |
+
--fp16 \
|
54 |
+
--do_train \
|
55 |
+
--predict_type=dummy \
|
56 |
+
--seed=42
|
57 |
+
```
|
58 |
+
|