--- language: - en license: apache-2.0 tags: - t5-small - text2text-generation - natural language generation - conversational system - task-oriented dialog datasets: - ConvLab/multiwoz21 metrics: - Slot Error Rate - sacrebleu widget: - text: '[request][taxi]([leave at][],[arrive by][]) system: ' - text: '[inform][restaurant]([area][centre],[food][Indian],[choice][nine]);[request][restaurant]([price range][]) system: ' inference: parameters: max_length: 100 base_model: t5-small model-index: - name: t5-small-nlg-multiwoz21 results: - task: type: text2text-generation name: natural language generation dataset: name: MultiWOZ 2.1 type: ConvLab/multiwoz21 split: test revision: 5f55375edbfe0270c20bcf770751ad982c0e6614 metrics: - type: Slot Error Rate value: 3.7 name: SER - type: sacrebleu value: 35.8 name: BLEU --- # t5-small-nlg-multiwoz21 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0