File size: 3,216 Bytes
4108a09 4b20e3e 4108a09 4b20e3e 4108a09 4b20e3e 03fada7 4b20e3e 5ced9cc 4b20e3e 4108a09 4b20e3e 4108a09 4b20e3e 4108a09 4b20e3e 4108a09 03fada7 4108a09 4b20e3e 4108a09 4b20e3e 4108a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
language:
- en
license: apache-2.0
tags:
- t5-small
- text2text-generation
- natural language generation
- conversational system
- task-oriented dialog
datasets:
- ConvLab/sgd
- ConvLab/tm1
- ConvLab/tm2
- ConvLab/tm3
- ConvLab/multiwoz21
metrics:
- Slot Error Rate
- sacrebleu
model-index:
- name: t5-small-nlg-multiwoz21_sgd_tm1_tm2_tm3
results:
- task:
type: text2text-generation
name: natural language generation
dataset:
type: ConvLab/multiwoz21
name: MultiWOZ 2.1
split: test
revision: 5f55375edbfe0270c20bcf770751ad982c0e6614
metrics:
- type: Slot Error Rate
value: 3.2
name: SER
- type: sacrebleu
value: 35.6
name: BLEU
- task:
type: text2text-generation
name: natural language generation
dataset:
type: ConvLab/sgd
name: SGD
split: test
revision: 6e8c79b888b21cc658cf9c0ce128d263241cf70f
metrics:
- type: Slot Error Rate
value: 8.3
name: SER
- type: sacrebleu
value: 29.9
name: BLEU
- task:
type: text2text-generation
name: natural language generation
dataset:
type: ConvLab/tm1, ConvLab/tm2, ConvLab/tm3
name: TM1+TM2+TM3
split: test
metrics:
- type: Slot Error Rate
value: 2.0
name: SER
- type: sacrebleu
value: 51.3
name: BLEU
widget:
- text: "[inform][restaurant]([area][centre],[food][Indian],[choice][nine]);[request][restaurant]([price range][])\n\nsystem: "
example_title: "MultiWOZ 2.1"
- text: "sgd: [confirm][Restaurants_2]([number_of_seats][2],[restaurant_name][P.f. Chang's],[location][Corte Madera],[time][12 pm],[date][March 8th])\n\nsystem: "
example_title: "Schema-Guided Dialog"
- text: "tm1: [inform][pizza_ordering]([name.store][Domino's])\n\nsystem: "
example_title: "Taskmaster-1"
- text: "tm2: [inform][restaurant-search]([name.restaurant][Via 313, the Violet Crown Social Club],[price_range][$8 per slice])\n\nsystem: "
example_title: "Taskmaster-2"
- text: "tm3: [inform][movie]([name.movie][Star Wars],[name.movie][The Grudge])\n\nsystem: "
example_title: "Taskmaster-3"
inference:
parameters:
max_length: 100
---
# t5-small-nlg-multiwoz21_sgd_tm1_tm2_tm3
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [MultiWOZ 2.1](https://huggingface.co/datasets/ConvLab/multiwoz21), [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd), [Taskmaster-1](https://huggingface.co/datasets/ConvLab/tm1), [Taskmaster-2](https://huggingface.co/datasets/ConvLab/tm2), and [Taskmaster-3](https://huggingface.co/datasets/ConvLab/tm3).
Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|