--- language: - en license: apache-2.0 tags: - t5-small - text2text-generation - natural language generation - conversational system - task-oriented dialog datasets: - ConvLab/tm1 - ConvLab/tm2 - ConvLab/tm3 metrics: - Slot Error Rate - sacrebleu model-index: - name: t5-small-nlg-tm1_tm2_tm3 results: - task: type: text2text-generation name: natural language generation dataset: type: ConvLab/tm1, ConvLab/tm2, ConvLab/tm3 name: tm1+tm2+tm3 split: test metrics: - type: Slot Error Rate value: 2.1 name: SER - type: sacrebleu value: 51.5 name: BLEU widget: - text: "tm1: [inform][pizza_ordering]([name.store][Domino's])\n\nsystem: " - text: "tm2: [inform][restaurant-search]([name.restaurant][Via 313, the Violet Crown Social Club],[price_range][$8 per slice])\n\nsystem: " - text: "tm3: [inform][movie]([name.movie][Star Wars],[name.movie][The Grudge])\n\nsystem: " inference: parameters: max_length: 100 --- # t5-small-nlg-sgd This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [Taskmaster-1](https://huggingface.co/datasets/ConvLab/tm1), [Taskmaster-2](https://huggingface.co/datasets/ConvLab/tm2), and [Taskmaster-3](https://huggingface.co/datasets/ConvLab/tm3). Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0