File size: 1,607 Bytes
6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 f144e7d 6ad2583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
license: apache-2.0
tags:
- t5-small
- text2text-generation
- natural language understanding
- conversational system
- task-oriented dialog
datasets:
- ConvLab/sgd
metrics:
- Dialog acts Accuracy
- Dialog acts F1
model-index:
- name: t5-small-nlu-sgd
results:
- task:
type: text2text-generation
name: natural language understanding
dataset:
type: ConvLab/sgd
name: SGD
split: test
revision: 6e8c79b888b21cc658cf9c0ce128d263241cf70f
metrics:
- type: Dialog acts Accuracy
value: 45.0
name: Accuracy
- type: Dialog acts F1
value: 58.6
name: F1
widget:
- text: "user: Could you get me a reservation at P.f. Chang's in Corte Madera at afternoon 12?"
- text: "user: Sure, may I know if they have vegetarian options and how expensive is their food?"
inference:
parameters:
max_length: 100
---
# t5-small-nlu-sgd
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [Schema-Guided Dialog](https://huggingface.co/datasets/ConvLab/sgd).
Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|