zhuqi commited on
Commit
a4e5105
1 Parent(s): 7f2d384

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - t5-small
7
+ - text2text-generation
8
+ - natural language understanding
9
+ - conversational system
10
+ - task-oriented dialog
11
+ datasets:
12
+ - ConvLab/tm3
13
+ metrics:
14
+ - Dialog acts Accuracy
15
+ - Dialog acts F1
16
+
17
+ model-index:
18
+ - name: t5-small-nlu-tm3-context3
19
+ results:
20
+ - task:
21
+ type: text2text-generation
22
+ name: natural language understanding
23
+ dataset:
24
+ type: ConvLab/tm3
25
+ name: Taskmaster-3
26
+ split: test
27
+ revision: 910584e5451e2e439bb2a07b8544ecb42ff8835b
28
+ metrics:
29
+ - type: Dialog acts Accuracy
30
+ value: 89.0
31
+ name: Accuracy
32
+ - type: Dialog acts F1
33
+ value: 85.1
34
+ name: F1
35
+
36
+ widget:
37
+ - text: "system: OK. And where will you be seeing the movie?\nuser: In Creek's End, Oregon\nsystem: Creek’s End, Oregon. Got it. Is there a particular movie you have in mind?\nuser: Mulan, please. We are taking the kids"
38
+ - text: "system: No problem. It looks like tonight’s remaining showtimes for Mulan at AMC Mercado 24 are 5:00pm, 7:10pm, and 9:45pm. Which is best for you?\nuser: I would like the earliest time, 5:00pm\nsystem: Great. And how many tickets?\nuser: three please"
39
+
40
+ inference:
41
+ parameters:
42
+ max_length: 100
43
+
44
+ ---
45
+
46
+ # t5-small-nlu-tm3-context3
47
+
48
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on [Taskmaster-3](https://huggingface.co/datasets/ConvLab/tm3) with context window size == 3.
49
+
50
+ Refer to [ConvLab-3](https://github.com/ConvLab/ConvLab-3) for model description and usage.
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.001
58
+ - train_batch_size: 128
59
+ - eval_batch_size: 64
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 256
63
+ - optimizer: Adafactor
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 10.0
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.18.0
70
+ - Pytorch 1.10.2+cu102
71
+ - Datasets 1.18.3
72
+ - Tokenizers 0.11.0