File size: 13,693 Bytes
b5ce154
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57a1a30310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57a1a303a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57a1a30430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57a1a304c0>", "_build": "<function ActorCriticPolicy._build at 0x7f57a1a30550>", "forward": "<function ActorCriticPolicy.forward at 0x7f57a1a305e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f57a1a30670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57a1a30700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f57a1a30790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57a1a30820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57a1a308b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57a1a30940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f57a1a2cbc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 436976, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690476961614295250, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1SKTyuEZC6KgAWNZPRDDBSzYC6FpRYtAAAgD8AAIA/ZgZPPDjGwLu+vyq8NwyYPOgGHD07U4C9AACAPwAAgD+aTzU9uptpP2e2ib0GGrq+qIkcPSCHiDwAAAAAAAAAAGbZDj2MALs/hDUWPglppr6MXBE+PEiJvQAAAAAAAAAAzVAcPZ+NkrvbXx89k/FEPZVBwbydlGs9AACAPwAAgD8Akvg8Mwq/Pgp83L2p5MO+InY1PGahBD0AAAAAAAAAACaRgz13KK0/xhhrPokEq76RjzA+uxXxPQAAAAAAAAAATWhDPvNicj+7wBU7fLvFvsFFGT7Wv/K9AAAAAAAAAAAgNwA+7gsBPxMtVb6CvMW+yJXOPBWqrrwAAAAAAAAAAMiUjr4Ho3o/mJyWvg9DFL9xN7++Mq4TvAAAAAAAAAAAmiImvV4irD1KrvQ87GlbvkALST20a4c8AAAAAAAAAACAZnQ9TlWgP1TQtD0B4by+IlgVPtLGIjwAAAAAAAAAAOamlj6TVKw/DTnqPp1Str7azAg/BrBgPAAAAAAAAAAAZpHTvZzbkD5J8SA+NadevlLTFj3tmTG8AAAAAAAAAACzp349rmGFuumBBTpa3ya0jJ9lu8JNGLkAAAAAAAAAAKbd4D3bnpM/rKWaPpUirL7wLUE+bpcaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.5740160000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK7hWkrPMWMAWyUTREBjAF0lEdAlpBMdtEXtXV9lChoBkdAbedXHzYmLWgHTQMBaAhHQJaQXFo+Ofd1fZQoaAZHQHGF5FspG4JoB00DAWgIR0CWkQ3Qla8pdX2UKGgGR0BxNOPdVNpNaAdL+2gIR0CWo7xwQ176dX2UKGgGR0BxNycz67/XaAdNCQFoCEdAlqRVC5VfeHV9lChoBkdAbz7ZSNwR5GgHS+doCEdAlqScGkep43V9lChoBkdAcgoVAzHjqGgHTQEBaAhHQJak0Kneizt1fZQoaAZHQHGQ+1KGtZFoB01aAWgIR0CWpR0g8r7PdX2UKGgGR0BxDhPbfxc3aAdNBQFoCEdAlqYu1WsBAHV9lChoBkdAcSwvvjOs1mgHTRIBaAhHQJamQq4H5ah1fZQoaAZHQHOnMAaNuLtoB00XAWgIR0CWpx6fJ3gUdX2UKGgGR0BxkyqHXVbzaAdL+GgIR0CWqGUBGQS0dX2UKGgGR0BxX0NqgyuZaAdNLwFoCEdAlqkE6HTJAHV9lChoBkdAcPdvWH1vl2gHTUoBaAhHQJapKkWRA8l1fZQoaAZHQHKt5djXnQpoB00TAWgIR0CWqcTaTOgQdX2UKGgGR0BxTsPlMh5gaAdNIAFoCEdAlqo3VbzK93V9lChoBkdAcJmexwAEMmgHS+ZoCEdAlqpirPt2LnV9lChoBkdAcui8PnSv1WgHTRwBaAhHQJaq4uez2OB1fZQoaAZHQHJN5OzposZoB0vmaAhHQJarL+0gKWt1fZQoaAZHQHBuYouwostoB00fAWgIR0CWrIN47ihndX2UKGgGR0Bw/iuieumraAdNSQJoCEdAlq0ygPEsKHV9lChoBkdAc8wydWhh6WgHTR0BaAhHQJatOXiR4hV1fZQoaAZHQHJvXDFZPmBoB00OAWgIR0CWreu6ErXldX2UKGgGR0BwrnyJ9AooaAdL+GgIR0CWriGzru6VdX2UKGgGR0ByXEPEsJ6ZaAdL4mgIR0CWr0aMrEtNdX2UKGgGR0BwamW4Vh1DaAdNBAFoCEdAlq+uaOPvKHV9lChoBkdAb5Nm6oVEeGgHS/poCEdAlrAgEU0vXnV9lChoBkdAcsxKqGUOeGgHTZwBaAhHQJawbVwxWT51fZQoaAZHQG9luCoS+QFoB0v6aAhHQJawunVG0/p1fZQoaAZHQHBlzArQPZtoB00IAWgIR0CWsYt6X0GvdX2UKGgGR0ByCGj9GZuyaAdNFgFoCEdAlrIcEzO5a3V9lChoBkdAcgLlpXZGrmgHTRMBaAhHQJayikLx7Rh1fZQoaAZHQG2T0pVjqfRoB0vsaAhHQJazIQHzH0d1fZQoaAZHQHN8cneBQN1oB0v5aAhHQJa0NLGrCFd1fZQoaAZHQHEwfM4cWCVoB0v9aAhHQJa0SzzErG11fZQoaAZHQHNs5UHY6GRoB0vzaAhHQJa0y/JvHcV1fZQoaAZHQGJShY3eenRoB03oA2gIR0CWtUeKsMiKdX2UKGgGR0BywXadtl7MaAdL/2gIR0CWtVbypaRqdX2UKGgGR0BygMpz90ihaAdL+mgIR0CWtqcZLqUvdX2UKGgGR0BzI8lu3trsaAdNCwFoCEdAlrbAUYbbUXV9lChoBkdAcYDm65Gz8mgHS/FoCEdAlrdqDXe3yHV9lChoBkdAbtOFlkH2RWgHTQIBaAhHQJa3meEqUeN1fZQoaAZHQHAidSuQp4NoB00OAWgIR0CWt6TzND+jdX2UKGgGR0Busg5BC2MLaAdL6GgIR0CWuIZxJd0JdX2UKGgGR0Bye0lSjxkNaAdNDQFoCEdAlrj57CzkZXV9lChoBkdAcVW1k1/DtWgHTQwBaAhHQJa57EVFhG91fZQoaAZHQG8AMnqmj0toB0v0aAhHQJa7EYVIqb11fZQoaAZHQHIRhIe5nUVoB00fAWgIR0CWuyArQPZqdX2UKGgGR0BiFr2+PBBSaAdN6gJoCEdAlrs2vwEyL3V9lChoBkdActGZsKsuF2gHTQQBaAhHQJa7agzxgAp1fZQoaAZHQHCuJ31SOzZoB0v3aAhHQJa7oP+XJHR1fZQoaAZHQHDxGn0kGA1oB0vqaAhHQJa7yqm0mdB1fZQoaAZHQHBElhoduHhoB0v9aAhHQJa8KLyc0+F1fZQoaAZHQHIpPzreImBoB0vgaAhHQJa8wecQRPJ1fZQoaAZHQHEbSOmzjWFoB0viaAhHQJa9hhE0BOp1fZQoaAZHQG+tokJKJ2toB00HAWgIR0CWvZxW1c+rdX2UKGgGR0BvmlvXK8tgaAdL/WgIR0CWvjddVvMsdX2UKGgGR0BwOAl8gIQfaAdNCgFoCEdAltD7LMcIaHV9lChoBkdAb3cx20Re1WgHS/loCEdAltD8VxjriXV9lChoBkdAcR7ROk+HJ2gHTQMBaAhHQJbSIbNr0rd1fZQoaAZHQHIZhDTjNpxoB00hA2gIR0CW0mmHxjJ/dX2UKGgGR0Bu7fjhky1vaAdL/GgIR0CW0vdT5wfhdX2UKGgGR0Bx+Qtf5ULlaAdL+mgIR0CW00ZdOZb7dX2UKGgGR0BxVrF4s3AEaAdNBQFoCEdAltNaXSjQA3V9lChoBkdAcAa4AS39aWgHS/poCEdAltOz+BH09XV9lChoBkdAcfi0IToMa2gHTR8BaAhHQJbT8leF+NN1fZQoaAZHQG1gbmU4aP1oB00VAWgIR0CW1DFrVOKwdX2UKGgGR0Buv0JUo8ZDaAdNEQFoCEdAltSos/Y8MnV9lChoBkdAbDk2UB4lhWgHTQIBaAhHQJbU7QBxPwd1fZQoaAZHQHCFSS3b215oB0vjaAhHQJbU8wGnn+11fZQoaAZHQHGO8LKFIupoB0vjaAhHQJbVAixFAml1fZQoaAZHQHN+3WJ79htoB0vlaAhHQJbWlQvYe1d1fZQoaAZHQHHJsv24/eNoB00ZAWgIR0CW1sIIF/x2dX2UKGgGR0Byxdvo/zJ7aAdL7WgIR0CW1soNd7fIdX2UKGgGR0Bw4S59Vmz0aAdNCwFoCEdAltiywB5ooXV9lChoBkdAcqw2aUiY9mgHTQQBaAhHQJbYzP9kz411fZQoaAZHQHHXFj3Ehq1oB0vwaAhHQJbZGfe1rqN1fZQoaAZHQHNPyu2Zy+9oB00EAWgIR0CW2VqioKlYdX2UKGgGR0BxaSbVjI7vaAdNAgFoCEdAltmrYkE9uHV9lChoBkdAcug4bS7XhGgHTQYBaAhHQJbaGlEZzgd1fZQoaAZHQHAaMOoYNy5oB0vnaAhHQJbarnbItDl1fZQoaAZHQHDXzfvWpZRoB0vzaAhHQJbarIHTqjd1fZQoaAZHQHCSovalDWtoB00UAWgIR0CW2sAKv3ajdX2UKGgGR0BvkzT+ee4DaAdL+GgIR0CW2w/mT1TSdX2UKGgGR0Bx8Q4EOiFkaAdL9mgIR0CW2xwy6+WXdX2UKGgGR0BzJyQ5myxBaAdNHgFoCEdAlts3JT2nKnV9lChoBkdActm17IDHO2gHS9toCEdAltxGxyGSIXV9lChoBkdAb1nM23rleWgHS+5oCEdAltywA6uGK3V9lChoBkdAcgTaoddVvWgHTR0BaAhHQJbdpWJaaCt1fZQoaAZHQHM1KkqMFU1oB0vlaAhHQJbeUaHbh3t1fZQoaAZHQHBPobKifxtoB0vpaAhHQJbegmKIi1R1fZQoaAZHQHNscKXv6TJoB0veaAhHQJbegdOqNqB1fZQoaAZHQHFt9CRfWtloB00LAWgIR0CW3+vqkdmydX2UKGgGR0BxdAbLlmvoaAdL/mgIR0CW4F60pmVadX2UKGgGR0BwsLObAk9maAdNDgFoCEdAluBZDArQPnV9lChoBkdAbml0aIeo1mgHS/doCEdAluC4YixFAnV9lChoBkdAcdkskY4yXWgHS/poCEdAluDfViF0xXV9lChoBkdAcnEu3c580GgHS/BoCEdAluEeK0lZ5nV9lChoBkdAcueXE61b7mgHS/VoCEdAluEgfuCwr3V9lChoBkdAbzHgMMI/q2gHTQsBaAhHQJbhN/gBLf11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 352, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}