--- base_model: UCLAML/mistral-7b-expert-iteration-iter3 datasets: - synthetic_data_mistral-7b-instruct-expert-iteration-iter3_score tags: - alignment-handbook - generated_from_trainer - autoquant - gptq model-index: - name: UCLAML/mistral-7b-expert-iteration-iter3 results: [] --- # Mistral-7B-Instruct-EI-Iter3 This model is a GPTQ version of [UCLAML/mistral-7b-expert-iteration-iter3](UCLAML/mistral-7b-expert-iteration-iter3) Created with [AutoQuant](https://colab.research.google.com/drive/1b6nqC7UZVt8bx4MksX7s656GXPM-eWw4?usp=sharing) ## Model description I like the GPTQ format, this is 8bit, GROUP_SIZE 32. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6652 | 1.0 | 106 | 0.4722 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1