Add ner configs
Browse files- README.md +33 -0
- config.json +48 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- ner
|
6 |
+
widget:
|
7 |
+
- text: "These shoes from Tommy Hilfiger fit quite well sincerely, Oscar"
|
8 |
+
---
|
9 |
+
|
10 |
+
### Description
|
11 |
+
|
12 |
+
A Named Entity Recognition model trained on a customer feedback data using DistilBert.
|
13 |
+
Possible labels are in BIO-notation:
|
14 |
+
|
15 |
+
- PROD: for certain products
|
16 |
+
- BRND: for brands
|
17 |
+
- PERS: people names
|
18 |
+
|
19 |
+
The following tags are simply in place to help better categorize the previous tags
|
20 |
+
|
21 |
+
- MATR: relating to materials, e.g. cloth, leather, seam, etc.
|
22 |
+
- TIME: time related entities
|
23 |
+
- MISC: any other entities that might skew ther results
|
24 |
+
|
25 |
+
### Usage
|
26 |
+
|
27 |
+
```
|
28 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v7_distil")
|
31 |
+
|
32 |
+
model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v7_distil")
|
33 |
+
```
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-cased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForTokenClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "B-BRND",
|
13 |
+
"1": "B-MATR",
|
14 |
+
"2": "B-MISC",
|
15 |
+
"3": "B-PERS",
|
16 |
+
"4": "B-PROD",
|
17 |
+
"5": "B-TIME",
|
18 |
+
"6": "I-BRND",
|
19 |
+
"7": "I-PERS",
|
20 |
+
"8": "O",
|
21 |
+
"9": "PAD"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"label2id": {
|
25 |
+
"B-BRND": 0,
|
26 |
+
"B-MATR": 1,
|
27 |
+
"B-MISC": 2,
|
28 |
+
"B-PERS": 3,
|
29 |
+
"B-PROD": 4,
|
30 |
+
"B-TIME": 5,
|
31 |
+
"I-BRND": 6,
|
32 |
+
"I-PERS": 7,
|
33 |
+
"O": 8,
|
34 |
+
"PAD": 9
|
35 |
+
},
|
36 |
+
"max_position_embeddings": 512,
|
37 |
+
"model_type": "distilbert",
|
38 |
+
"n_heads": 12,
|
39 |
+
"n_layers": 6,
|
40 |
+
"output_past": true,
|
41 |
+
"pad_token_id": 0,
|
42 |
+
"qa_dropout": 0.1,
|
43 |
+
"seq_classif_dropout": 0.2,
|
44 |
+
"sinusoidal_pos_embds": false,
|
45 |
+
"tie_weights_": true,
|
46 |
+
"transformers_version": "4.3.2",
|
47 |
+
"vocab_size": 28996
|
48 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96ea11f5b2435ac079502bf2080ff6eef7d69b4e9d2f35a94eddb7c2c5b02f12
|
3 |
+
size 260835627
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-cased"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|