{ "best_metric": 72.71001694413671, "best_model_checkpoint": "/mounts/work/faeze/attempt/new_setting_outputs/source_adapter/crisis_13_multi/30/checkpoint-1968", "epoch": 200.0, "global_step": 3200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 1.0, "learning_rate": 1.4999999999999999e-05, "loss": 7.6684, "step": 16 }, { "epoch": 1.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 9.456674575805664, "eval_runtime": 2.8438, "eval_samples_per_second": 44.306, "step": 16 }, { "epoch": 2.0, "learning_rate": 2.9999999999999997e-05, "loss": 7.5902, "step": 32 }, { "epoch": 2.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 8.634718894958496, "eval_runtime": 2.6697, "eval_samples_per_second": 47.197, "step": 32 }, { "epoch": 3.0, "learning_rate": 4.4999999999999996e-05, "loss": 7.1048, "step": 48 }, { "epoch": 3.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 7.145618915557861, "eval_runtime": 2.1394, "eval_samples_per_second": 58.894, "step": 48 }, { "epoch": 4.0, "learning_rate": 5.9999999999999995e-05, "loss": 6.3092, "step": 64 }, { "epoch": 4.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 5.154701232910156, "eval_runtime": 2.5157, "eval_samples_per_second": 50.085, "step": 64 }, { "epoch": 5.0, "learning_rate": 7.5e-05, "loss": 4.534, "step": 80 }, { "epoch": 5.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 2.9887895584106445, "eval_runtime": 2.7985, "eval_samples_per_second": 45.024, "step": 80 }, { "epoch": 6.0, "learning_rate": 8.999999999999999e-05, "loss": 2.5355, "step": 96 }, { "epoch": 6.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 1.6358801126480103, "eval_runtime": 2.4719, "eval_samples_per_second": 50.972, "step": 96 }, { "epoch": 7.0, "learning_rate": 0.00010499999999999999, "loss": 1.335, "step": 112 }, { "epoch": 7.0, "eval_accuracy": 28.57142857142857, "eval_average_metrics": 20.07269612108322, "eval_classification_report": "{\"0\": {\"precision\": 0.35294117647058826, \"recall\": 0.7692307692307693, \"f1-score\": 0.48387096774193555, \"support\": 39.0}, \"1\": {\"precision\": 0.15384615384615385, \"recall\": 0.375, \"f1-score\": 0.2181818181818182, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.2857142857142857, \"recall\": 0.2857142857142857, \"f1-score\": 0.2857142857142857, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.03898364079359554, \"recall\": 0.08801775147928993, \"f1-score\": 0.05400406045567337, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.12877971701501112, \"recall\": 0.2857142857142857, \"f1-score\": 0.17747521295908397, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.2857142857142857, \"recall\": 0.2857142857142857, \"f1-score\": 0.2857142857142857, \"support\": 126.0}}", "eval_f1_macro": 5.400406045567337, "eval_f1_micro": 28.57142857142857, "eval_f1_weighted": 17.7475212959084, "eval_loss": 0.7804319858551025, "eval_runtime": 2.2468, "eval_samples_per_second": 56.081, "step": 112 }, { "epoch": 8.0, "learning_rate": 0.00011999999999999999, "loss": 0.7534, "step": 128 }, { "epoch": 8.0, "eval_accuracy": 26.190476190476193, "eval_average_metrics": 19.4866922545494, "eval_classification_report": "{\"0\": {\"precision\": 0.42857142857142855, \"recall\": 0.5384615384615384, \"f1-score\": 0.4772727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.1896551724137931, \"recall\": 0.6875, \"f1-score\": 0.2972972972972973, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.05263157894736842, \"recall\": 0.1111111111111111, \"f1-score\": 0.07142857142857142, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.2619047619047619, \"recall\": 0.2619047619047619, \"f1-score\": 0.2619047619047619, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.05160447537943001, \"recall\": 0.10285174227481919, \"f1-score\": 0.06507681507681508, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.16049565621771997, \"recall\": 0.2619047619047619, \"f1-score\": 0.19058135129563702, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.2619047619047619, \"recall\": 0.2619047619047619, \"f1-score\": 0.2619047619047619, \"support\": 126.0}}", "eval_f1_macro": 6.507681507681508, "eval_f1_micro": 26.190476190476193, "eval_f1_weighted": 19.058135129563702, "eval_loss": 0.5934917330741882, "eval_runtime": 2.7338, "eval_samples_per_second": 46.089, "step": 128 }, { "epoch": 9.0, "learning_rate": 0.000135, "loss": 0.5891, "step": 144 }, { "epoch": 9.0, "eval_accuracy": 30.952380952380953, "eval_average_metrics": 20.099328074788197, "eval_classification_report": "{\"0\": {\"precision\": 0.31451612903225806, \"recall\": 1.0, \"f1-score\": 0.4785276073619632, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.30952380952380953, \"recall\": 0.30952380952380953, \"f1-score\": 0.30952380952380953, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.024193548387096774, \"recall\": 0.07692307692307693, \"f1-score\": 0.03680981595092025, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.09735023041474654, \"recall\": 0.30952380952380953, \"f1-score\": 0.14811568799298863, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.30952380952380953, \"recall\": 0.30952380952380953, \"f1-score\": 0.30952380952380953, \"support\": 126.0}}", "eval_f1_macro": 3.6809815950920246, "eval_f1_micro": 30.952380952380953, "eval_f1_weighted": 14.811568799298863, "eval_loss": 0.5142219662666321, "eval_runtime": 2.6178, "eval_samples_per_second": 48.131, "step": 144 }, { "epoch": 10.0, "learning_rate": 0.00015, "loss": 0.5597, "step": 160 }, { "epoch": 10.0, "eval_accuracy": 31.746031746031743, "eval_average_metrics": 22.052621322694314, "eval_classification_report": "{\"0\": {\"precision\": 0.3673469387755102, \"recall\": 0.9230769230769231, \"f1-score\": 0.5255474452554746, \"support\": 39.0}, \"1\": {\"precision\": 0.19047619047619047, \"recall\": 0.25, \"f1-score\": 0.2162162162162162, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.31746031746031744, \"recall\": 0.31746031746031744, \"f1-score\": 0.31746031746031744, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.04290947148090005, \"recall\": 0.09023668639053255, \"f1-score\": 0.05705874319013006, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.13789007666558686, \"recall\": 0.31746031746031744, \"f1-score\": 0.19012547479700767, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.31746031746031744, \"recall\": 0.31746031746031744, \"f1-score\": 0.31746031746031744, \"support\": 126.0}}", "eval_f1_macro": 5.705874319013006, "eval_f1_micro": 31.746031746031743, "eval_f1_weighted": 19.012547479700768, "eval_loss": 0.5033286809921265, "eval_runtime": 2.1641, "eval_samples_per_second": 58.224, "step": 160 }, { "epoch": 11.0, "learning_rate": 0.000165, "loss": 0.5297, "step": 176 }, { "epoch": 11.0, "eval_accuracy": 34.12698412698413, "eval_average_metrics": 24.380988746026958, "eval_classification_report": "{\"0\": {\"precision\": 0.3611111111111111, \"recall\": 1.0, \"f1-score\": 0.5306122448979591, \"support\": 39.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.125, \"f1-score\": 0.21052631578947367, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.07142857142857142, \"recall\": 0.06666666666666667, \"f1-score\": 0.0689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 0.125, \"f1-score\": 0.2222222222222222, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.16147741147741146, \"recall\": 0.10128205128205128, \"f1-score\": 0.07940971539623341, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.2684240362811791, \"recall\": 0.3412698412698413, \"f1-score\": 0.21329015190516235, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}}", "eval_f1_macro": 7.940971539623341, "eval_f1_micro": 34.12698412698413, "eval_f1_weighted": 21.329015190516234, "eval_loss": 0.4936213195323944, "eval_runtime": 1.8354, "eval_samples_per_second": 68.65, "step": 176 }, { "epoch": 12.0, "learning_rate": 0.00017999999999999998, "loss": 0.5221, "step": 192 }, { "epoch": 12.0, "eval_accuracy": 31.746031746031743, "eval_average_metrics": 21.30117592483184, "eval_classification_report": "{\"0\": {\"precision\": 0.33620689655172414, \"recall\": 1.0, \"f1-score\": 0.5032258064516129, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.0625, \"f1-score\": 0.1111111111111111, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.31746031746031744, \"recall\": 0.31746031746031744, \"f1-score\": 0.31746031746031744, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0643236074270557, \"recall\": 0.08173076923076923, \"f1-score\": 0.047256685966363385, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.16755610290093048, \"recall\": 0.31746031746031744, \"f1-score\": 0.16986971610627524, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.31746031746031744, \"recall\": 0.31746031746031744, \"f1-score\": 0.31746031746031744, \"support\": 126.0}}", "eval_f1_macro": 4.725668596636338, "eval_f1_micro": 31.746031746031743, "eval_f1_weighted": 16.986971610627524, "eval_loss": 0.48176074028015137, "eval_runtime": 2.388, "eval_samples_per_second": 52.765, "step": 192 }, { "epoch": 13.0, "learning_rate": 0.000195, "loss": 0.5002, "step": 208 }, { "epoch": 13.0, "eval_accuracy": 34.12698412698413, "eval_average_metrics": 25.8679315819193, "eval_classification_report": "{\"0\": {\"precision\": 0.3875, \"recall\": 0.7948717948717948, \"f1-score\": 0.5210084033613446, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.0625, \"f1-score\": 0.1111111111111111, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.6428571428571429, \"f1-score\": 0.3829787234042553, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 0.25, \"f1-score\": 0.4, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.16617132867132867, \"recall\": 0.13463299520991828, \"f1-score\": 0.10885371060590082, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.27722763347763346, \"recall\": 0.3412698412698413, \"f1-score\": 0.2433238701311888, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}}", "eval_f1_macro": 10.885371060590082, "eval_f1_micro": 34.12698412698413, "eval_f1_weighted": 24.33238701311888, "eval_loss": 0.47854530811309814, "eval_runtime": 2.577, "eval_samples_per_second": 48.893, "step": 208 }, { "epoch": 14.0, "learning_rate": 0.00020999999999999998, "loss": 0.4966, "step": 224 }, { "epoch": 14.0, "eval_accuracy": 35.714285714285715, "eval_average_metrics": 28.979835670868624, "eval_classification_report": "{\"0\": {\"precision\": 0.40298507462686567, \"recall\": 0.6923076923076923, \"f1-score\": 0.5094339622641508, \"support\": 39.0}, \"1\": {\"precision\": 0.22857142857142856, \"recall\": 0.5, \"f1-score\": 0.3137254901960784, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.42857142857142855, \"f1-score\": 0.4137931034482759, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.1111111111111111, \"f1-score\": 0.19999999999999998, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 0.375, \"f1-score\": 0.5454545454545454, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.35714285714285715, \"recall\": 0.35714285714285715, \"f1-score\": 0.35714285714285715, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.2331966540921765, \"recall\": 0.1620761716915563, \"f1-score\": 0.15249285395100387, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.3331234981554811, \"recall\": 0.35714285714285715, \"f1-score\": 0.2924148585980267, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.35714285714285715, \"recall\": 0.35714285714285715, \"f1-score\": 0.35714285714285715, \"support\": 126.0}}", "eval_f1_macro": 15.249285395100387, "eval_f1_micro": 35.714285714285715, "eval_f1_weighted": 29.24148585980267, "eval_loss": 0.46057724952697754, "eval_runtime": 2.4683, "eval_samples_per_second": 51.047, "step": 224 }, { "epoch": 15.0, "learning_rate": 0.000225, "loss": 0.4938, "step": 240 }, { "epoch": 15.0, "eval_accuracy": 34.92063492063492, "eval_average_metrics": 26.139217229442792, "eval_classification_report": "{\"0\": {\"precision\": 0.35106382978723405, \"recall\": 0.8461538461538461, \"f1-score\": 0.4962406015037594, \"support\": 39.0}, \"1\": {\"precision\": 0.2857142857142857, \"recall\": 0.5, \"f1-score\": 0.36363636363636365, \"support\": 16.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.07142857142857142, \"f1-score\": 0.13333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 0.25, \"f1-score\": 0.4, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.3492063492063492, \"recall\": 0.3492063492063492, \"f1-score\": 0.3492063492063492, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.20282908580780923, \"recall\": 0.1282755705832629, \"f1-score\": 0.10717002295949665, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.3195469677232595, \"recall\": 0.3492063492063492, \"f1-score\": 0.2399859678055167, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.3492063492063492, \"recall\": 0.3492063492063492, \"f1-score\": 0.3492063492063492, \"support\": 126.0}}", "eval_f1_macro": 10.717002295949666, "eval_f1_micro": 34.92063492063492, "eval_f1_weighted": 23.99859678055167, "eval_loss": 0.4499710202217102, "eval_runtime": 2.3173, "eval_samples_per_second": 54.375, "step": 240 }, { "epoch": 16.0, "learning_rate": 0.00023999999999999998, "loss": 0.4755, "step": 256 }, { "epoch": 16.0, "eval_accuracy": 36.507936507936506, "eval_average_metrics": 26.363239384072717, "eval_classification_report": "{\"0\": {\"precision\": 0.3619047619047619, \"recall\": 0.9743589743589743, \"f1-score\": 0.5277777777777778, \"support\": 39.0}, \"1\": {\"precision\": 0.4375, \"recall\": 0.4375, \"f1-score\": 0.4375, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 0.125, \"f1-score\": 0.2222222222222222, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.36507936507936506, \"recall\": 0.36507936507936506, \"f1-score\": 0.36507936507936506, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.13841575091575092, \"recall\": 0.1182199211045365, \"f1-score\": 0.09134615384615384, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.2310657596371882, \"recall\": 0.36507936507936506, \"f1-score\": 0.2330246913580247, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.36507936507936506, \"recall\": 0.36507936507936506, \"f1-score\": 0.36507936507936506, \"support\": 126.0}}", "eval_f1_macro": 9.134615384615383, "eval_f1_micro": 36.507936507936506, "eval_f1_weighted": 23.30246913580247, "eval_loss": 0.4793759286403656, "eval_runtime": 2.2912, "eval_samples_per_second": 54.994, "step": 256 }, { "epoch": 17.0, "learning_rate": 0.00025499999999999996, "loss": 0.4562, "step": 272 }, { "epoch": 17.0, "eval_accuracy": 38.095238095238095, "eval_average_metrics": 30.50407509099019, "eval_classification_report": "{\"0\": {\"precision\": 0.3764705882352941, \"recall\": 0.8205128205128205, \"f1-score\": 0.5161290322580645, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.14285714285714285, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.16666666666666666, \"recall\": 0.06666666666666667, \"f1-score\": 0.09523809523809522, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.14285714285714285, \"recall\": 0.1111111111111111, \"f1-score\": 0.125, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.38095238095238093, \"recall\": 0.38095238095238093, \"f1-score\": 0.38095238095238093, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.22053436759319112, \"recall\": 0.16470367239598008, \"f1-score\": 0.15647570579332368, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.35685162954070515, \"recall\": 0.38095238095238093, \"f1-score\": 0.3017825359415221, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.38095238095238093, \"recall\": 0.38095238095238093, \"f1-score\": 0.38095238095238093, \"support\": 126.0}}", "eval_f1_macro": 15.647570579332367, "eval_f1_micro": 38.095238095238095, "eval_f1_weighted": 30.17825359415221, "eval_loss": 0.4321620762348175, "eval_runtime": 2.1389, "eval_samples_per_second": 58.909, "step": 272 }, { "epoch": 18.0, "learning_rate": 0.00027, "loss": 0.4543, "step": 288 }, { "epoch": 18.0, "eval_accuracy": 39.682539682539684, "eval_average_metrics": 33.10535594570613, "eval_classification_report": "{\"0\": {\"precision\": 0.42424242424242425, \"recall\": 0.717948717948718, \"f1-score\": 0.5333333333333333, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.7142857142857143, \"recall\": 0.35714285714285715, \"f1-score\": 0.4761904761904762, \"support\": 14.0}, \"3\": {\"precision\": 0.14285714285714285, \"recall\": 0.06666666666666667, \"f1-score\": 0.09090909090909091, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.18181818181818182, \"recall\": 0.16666666666666666, \"f1-score\": 0.17391304347826086, \"support\": 12.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.1111111111111111, \"f1-score\": 0.1818181818181818, \"support\": 9.0}, \"7\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.3968253968253968, \"recall\": 0.3968253968253968, \"f1-score\": 0.3968253968253968, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.21530401965184576, \"recall\": 0.1909258476566169, \"f1-score\": 0.1837146786586094, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.3586234523087525, \"recall\": 0.3968253968253968, \"f1-score\": 0.34684876551884225, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.3968253968253968, \"recall\": 0.3968253968253968, \"f1-score\": 0.3968253968253968, \"support\": 126.0}}", "eval_f1_macro": 18.37146786586094, "eval_f1_micro": 39.682539682539684, "eval_f1_weighted": 34.68487655188422, "eval_loss": 0.41727712750434875, "eval_runtime": 3.3579, "eval_samples_per_second": 37.523, "step": 288 }, { "epoch": 19.0, "learning_rate": 0.000285, "loss": 0.4302, "step": 304 }, { "epoch": 19.0, "eval_accuracy": 42.06349206349206, "eval_average_metrics": 35.20694662138932, "eval_classification_report": "{\"0\": {\"precision\": 0.46153846153846156, \"recall\": 0.6153846153846154, \"f1-score\": 0.5274725274725274, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.6875, \"f1-score\": 0.4489795918367347, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.3181818181818182, \"recall\": 0.4666666666666667, \"f1-score\": 0.3783783783783784, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.1111111111111111, \"f1-score\": 0.1818181818181818, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.42063492063492064, \"recall\": 0.42063492063492064, \"f1-score\": 0.42063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.21732114039806347, \"recall\": 0.21609490936414014, \"f1-score\": 0.19908286545649181, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.3617123617123617, \"recall\": 0.42063492063492064, \"f1-score\": 0.36792515812923976, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.42063492063492064, \"recall\": 0.42063492063492064, \"f1-score\": 0.42063492063492064, \"support\": 126.0}}", "eval_f1_macro": 19.908286545649183, "eval_f1_micro": 42.06349206349206, "eval_f1_weighted": 36.79251581292397, "eval_loss": 0.40715110301971436, "eval_runtime": 3.0307, "eval_samples_per_second": 41.575, "step": 304 }, { "epoch": 20.0, "learning_rate": 0.0003, "loss": 0.426, "step": 320 }, { "epoch": 20.0, "eval_accuracy": 36.507936507936506, "eval_average_metrics": 30.909775757587838, "eval_classification_report": "{\"0\": {\"precision\": 0.5, \"recall\": 0.5128205128205128, \"f1-score\": 0.5063291139240506, \"support\": 39.0}, \"1\": {\"precision\": 0.3103448275862069, \"recall\": 0.5625, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.14285714285714285, \"f1-score\": 0.21052631578947364, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.35294117647058826, \"recall\": 0.5454545454545454, \"f1-score\": 0.42857142857142855, \"support\": 11.0}, \"5\": {\"precision\": 0.18518518518518517, \"recall\": 0.4166666666666667, \"f1-score\": 0.2564102564102564, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.5714285714285714, \"recall\": 0.5, \"f1-score\": 0.5333333333333333, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.36507936507936506, \"recall\": 0.36507936507936506, \"f1-score\": 0.36507936507936506, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.1784538277438886, \"recall\": 0.2061768359845283, \"f1-score\": 0.1796284960021956, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.32334540457306804, \"recall\": 0.36507936507936506, \"f1-score\": 0.3266038041425878, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.36507936507936506, \"recall\": 0.36507936507936506, \"f1-score\": 0.36507936507936506, \"support\": 126.0}}", "eval_f1_macro": 17.96284960021956, "eval_f1_micro": 36.507936507936506, "eval_f1_weighted": 32.660380414258775, "eval_loss": 0.3974955677986145, "eval_runtime": 2.9129, "eval_samples_per_second": 43.256, "step": 320 }, { "epoch": 21.0, "learning_rate": 0.00029833333333333334, "loss": 0.4084, "step": 336 }, { "epoch": 21.0, "eval_accuracy": 43.65079365079365, "eval_average_metrics": 36.246229895170245, "eval_classification_report": "{\"0\": {\"precision\": 0.4915254237288136, \"recall\": 0.7435897435897436, \"f1-score\": 0.5918367346938775, \"support\": 39.0}, \"1\": {\"precision\": 0.28205128205128205, \"recall\": 0.6875, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.5555555555555556, \"recall\": 0.3333333333333333, \"f1-score\": 0.4166666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.5, \"recall\": 0.09090909090909091, \"f1-score\": 0.15384615384615385, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.36363636363636365, \"recall\": 0.4444444444444444, \"f1-score\": 0.39999999999999997, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.4365079365079365, \"recall\": 0.4365079365079365, \"f1-score\": 0.43650793650793657, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.23277707371579603, \"recall\": 0.22498281632897016, \"f1-score\": 0.20589502073018556, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.37662729611882156, \"recall\": 0.4365079365079365, \"f1-score\": 0.37093830206075107, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.4365079365079365, \"recall\": 0.4365079365079365, \"f1-score\": 0.4365079365079365, \"support\": 126.0}}", "eval_f1_macro": 20.589502073018558, "eval_f1_micro": 43.65079365079366, "eval_f1_weighted": 37.093830206075104, "eval_loss": 0.4106772840023041, "eval_runtime": 1.9526, "eval_samples_per_second": 64.529, "step": 336 }, { "epoch": 22.0, "learning_rate": 0.00029666666666666665, "loss": 0.3997, "step": 352 }, { "epoch": 22.0, "eval_accuracy": 47.61904761904761, "eval_average_metrics": 39.14250059344129, "eval_classification_report": "{\"0\": {\"precision\": 0.4375, \"recall\": 0.8974358974358975, \"f1-score\": 0.5882352941176471, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.4375, \"f1-score\": 0.4666666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.8, \"recall\": 0.2857142857142857, \"f1-score\": 0.4210526315789473, \"support\": 14.0}, \"3\": {\"precision\": 0.6363636363636364, \"recall\": 0.4666666666666667, \"f1-score\": 0.5384615384615385, \"support\": 15.0}, \"4\": {\"precision\": 0.25, \"recall\": 0.09090909090909091, \"f1-score\": 0.13333333333333333, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.75, \"f1-score\": 0.6, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.47619047619047616, \"recall\": 0.47619047619047616, \"f1-score\": 0.47619047619047616, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.24029720279720282, \"recall\": 0.2252481492866108, \"f1-score\": 0.21136534339677945, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.41712662337662343, \"recall\": 0.47619047619047616, \"f1-score\": 0.4019537279599199, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.47619047619047616, \"recall\": 0.47619047619047616, \"f1-score\": 0.47619047619047616, \"support\": 126.0}}", "eval_f1_macro": 21.136534339677944, "eval_f1_micro": 47.61904761904761, "eval_f1_weighted": 40.19537279599199, "eval_loss": 0.3727606534957886, "eval_runtime": 1.8829, "eval_samples_per_second": 66.918, "step": 352 }, { "epoch": 23.0, "learning_rate": 0.00029499999999999996, "loss": 0.3573, "step": 368 }, { "epoch": 23.0, "eval_accuracy": 53.96825396825397, "eval_average_metrics": 48.15953664020103, "eval_classification_report": "{\"0\": {\"precision\": 0.6136363636363636, \"recall\": 0.6923076923076923, \"f1-score\": 0.6506024096385543, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.6875, \"f1-score\": 0.4489795918367347, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.2857142857142857, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.6428571428571429, \"recall\": 0.6, \"f1-score\": 0.6206896551724138, \"support\": 15.0}, \"4\": {\"precision\": 0.5, \"recall\": 0.45454545454545453, \"f1-score\": 0.47619047619047616, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.4166666666666667, \"f1-score\": 0.5, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.2222222222222222, \"f1-score\": 0.3333333333333333, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5396825396825397, \"recall\": 0.5396825396825397, \"f1-score\": 0.5396825396825397, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.36267898767898765, \"recall\": 0.30645817857356317, \"f1-score\": 0.3159782726225839, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.5680529787672645, \"recall\": 0.5396825396825397, \"f1-score\": 0.5310381136203779, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5396825396825397, \"recall\": 0.5396825396825397, \"f1-score\": 0.5396825396825397, \"support\": 126.0}}", "eval_f1_macro": 31.597827262258388, "eval_f1_micro": 53.96825396825397, "eval_f1_weighted": 53.10381136203779, "eval_loss": 0.36365827918052673, "eval_runtime": 2.4213, "eval_samples_per_second": 52.038, "step": 368 }, { "epoch": 24.0, "learning_rate": 0.00029333333333333327, "loss": 0.3419, "step": 384 }, { "epoch": 24.0, "eval_accuracy": 55.55555555555556, "eval_average_metrics": 50.0126414938445, "eval_classification_report": "{\"0\": {\"precision\": 0.6, \"recall\": 0.6923076923076923, \"f1-score\": 0.6428571428571429, \"support\": 39.0}, \"1\": {\"precision\": 0.2916666666666667, \"recall\": 0.4375, \"f1-score\": 0.35000000000000003, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.2857142857142857, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 0.6428571428571429, \"recall\": 0.8181818181818182, \"f1-score\": 0.7200000000000001, \"support\": 11.0}, \"5\": {\"precision\": 0.5714285714285714, \"recall\": 0.3333333333333333, \"f1-score\": 0.4210526315789474, \"support\": 12.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.6666666666666666, \"f1-score\": 0.5714285714285715, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.36456043956043954, \"recall\": 0.3378490099643946, \"f1-score\": 0.3402508018297492, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.572713529856387, \"recall\": 0.5555555555555556, \"f1-score\": 0.5491437468129197, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 126.0}}", "eval_f1_macro": 34.02508018297492, "eval_f1_micro": 55.55555555555556, "eval_f1_weighted": 54.91437468129197, "eval_loss": 0.347322553396225, "eval_runtime": 2.3904, "eval_samples_per_second": 52.71, "step": 384 }, { "epoch": 25.0, "learning_rate": 0.00029166666666666664, "loss": 0.3325, "step": 400 }, { "epoch": 25.0, "eval_accuracy": 57.936507936507944, "eval_average_metrics": 52.297604917191215, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6410256410256411, \"f1-score\": 0.6756756756756757, \"support\": 39.0}, \"1\": {\"precision\": 0.3103448275862069, \"recall\": 0.5625, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.2857142857142857, \"f1-score\": 0.3333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.5882352941176471, \"recall\": 0.9090909090909091, \"f1-score\": 0.7142857142857143, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.3333333333333333, \"f1-score\": 0.4444444444444444, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.37290110160292717, \"recall\": 0.36525621814083353, \"f1-score\": 0.35635352920420793, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6088569492582823, \"recall\": 0.5793650793650794, \"f1-score\": 0.5768205087532818, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}}", "eval_f1_macro": 35.63535292042079, "eval_f1_micro": 57.936507936507944, "eval_f1_weighted": 57.68205087532819, "eval_loss": 0.3364006280899048, "eval_runtime": 2.7872, "eval_samples_per_second": 45.206, "step": 400 }, { "epoch": 26.0, "learning_rate": 0.00029, "loss": 0.306, "step": 416 }, { "epoch": 26.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 55.876528208258975, "eval_classification_report": "{\"0\": {\"precision\": 0.6, \"recall\": 0.6923076923076923, \"f1-score\": 0.6428571428571429, \"support\": 39.0}, \"1\": {\"precision\": 0.4375, \"recall\": 0.4375, \"f1-score\": 0.4375, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5714285714285714, \"f1-score\": 0.5333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.8, \"f1-score\": 0.8000000000000002, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.4166666666666667, \"f1-score\": 0.5, \"support\": 12.0}, \"6\": {\"precision\": 0.5454545454545454, \"recall\": 0.6666666666666666, \"f1-score\": 0.6, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.40061188811188814, \"recall\": 0.37713472425010885, \"f1-score\": 0.3835552268244576, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6199134199134199, \"recall\": 0.6190476190476191, \"f1-score\": 0.6134106634106633, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 38.35552268244576, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 61.34106634106633, "eval_loss": 0.32190802693367004, "eval_runtime": 2.7645, "eval_samples_per_second": 45.579, "step": 416 }, { "epoch": 27.0, "learning_rate": 0.0002883333333333333, "loss": 0.2846, "step": 432 }, { "epoch": 27.0, "eval_accuracy": 55.55555555555556, "eval_average_metrics": 50.82666027128826, "eval_classification_report": "{\"0\": {\"precision\": 0.7407407407407407, \"recall\": 0.5128205128205128, \"f1-score\": 0.6060606060606061, \"support\": 39.0}, \"1\": {\"precision\": 0.3225806451612903, \"recall\": 0.625, \"f1-score\": 0.425531914893617, \"support\": 16.0}, \"2\": {\"precision\": 0.375, \"recall\": 0.42857142857142855, \"f1-score\": 0.39999999999999997, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.8, \"recall\": 0.7272727272727273, \"f1-score\": 0.761904761904762, \"support\": 11.0}, \"5\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 12.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.7777777777777778, \"f1-score\": 0.6086956521739131, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.3724227683905103, \"recall\": 0.36382890613659846, \"f1-score\": 0.3565789437204793, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6162523671356237, \"recall\": 0.5555555555555556, \"f1-score\": 0.5653763560199401, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 126.0}}", "eval_f1_macro": 35.657894372047934, "eval_f1_micro": 55.55555555555556, "eval_f1_weighted": 56.537635601994005, "eval_loss": 0.3318493664264679, "eval_runtime": 2.5179, "eval_samples_per_second": 50.042, "step": 432 }, { "epoch": 28.0, "learning_rate": 0.0002866666666666667, "loss": 0.2776, "step": 448 }, { "epoch": 28.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 55.8481540764454, "eval_classification_report": "{\"0\": {\"precision\": 0.6521739130434783, \"recall\": 0.7692307692307693, \"f1-score\": 0.7058823529411764, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.375, \"f1-score\": 0.42857142857142855, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.2857142857142857, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.7142857142857143, \"recall\": 0.9090909090909091, \"f1-score\": 0.8, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.3738992612738432, \"recall\": 0.3797121681737066, \"f1-score\": 0.37098718275188863, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6083760873357147, \"recall\": 0.626984126984127, \"f1-score\": 0.6089707263376731, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 37.098718275188865, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 60.897072633767316, "eval_loss": 0.3344155251979828, "eval_runtime": 2.3043, "eval_samples_per_second": 54.681, "step": 448 }, { "epoch": 29.0, "learning_rate": 0.000285, "loss": 0.267, "step": 464 }, { "epoch": 29.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 58.07588199120843, "eval_classification_report": "{\"0\": {\"precision\": 0.65, \"recall\": 0.6666666666666666, \"f1-score\": 0.6582278481012659, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.6428571428571429, \"f1-score\": 0.5142857142857143, \"support\": 14.0}, \"3\": {\"precision\": 0.8125, \"recall\": 0.8666666666666667, \"f1-score\": 0.8387096774193549, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4086177711177711, \"recall\": 0.3948662448662449, \"f1-score\": 0.3978357401891618, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6457341269841269, \"recall\": 0.6428571428571429, \"f1-score\": 0.6394852537448897, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 39.78357401891618, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 63.94852537448897, "eval_loss": 0.3272547721862793, "eval_runtime": 2.5935, "eval_samples_per_second": 48.584, "step": 464 }, { "epoch": 30.0, "learning_rate": 0.0002833333333333333, "loss": 0.239, "step": 480 }, { "epoch": 30.0, "eval_accuracy": 60.317460317460316, "eval_average_metrics": 54.635115828328324, "eval_classification_report": "{\"0\": {\"precision\": 0.6756756756756757, \"recall\": 0.6410256410256411, \"f1-score\": 0.6578947368421052, \"support\": 39.0}, \"1\": {\"precision\": 0.34615384615384615, \"recall\": 0.5625, \"f1-score\": 0.4285714285714286, \"support\": 16.0}, \"2\": {\"precision\": 0.45454545454545453, \"recall\": 0.35714285714285715, \"f1-score\": 0.4, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.8, \"recall\": 0.7272727272727273, \"f1-score\": 0.761904761904762, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.4444444444444444, \"f1-score\": 0.5333333333333333, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.3854467085236316, \"recall\": 0.37556812845274384, \"f1-score\": 0.3758621002498445, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6155326369612083, \"recall\": 0.6031746031746031, \"f1-score\": 0.603193326534082, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}}", "eval_f1_macro": 37.58621002498445, "eval_f1_micro": 60.317460317460316, "eval_f1_weighted": 60.319332653408196, "eval_loss": 0.3396092355251312, "eval_runtime": 2.2919, "eval_samples_per_second": 54.977, "step": 480 }, { "epoch": 31.0, "learning_rate": 0.00028166666666666666, "loss": 0.2362, "step": 496 }, { "epoch": 31.0, "eval_accuracy": 54.761904761904766, "eval_average_metrics": 50.149041962094415, "eval_classification_report": "{\"0\": {\"precision\": 0.5862068965517241, \"recall\": 0.4358974358974359, \"f1-score\": 0.5, \"support\": 39.0}, \"1\": {\"precision\": 0.34375, \"recall\": 0.6875, \"f1-score\": 0.4583333333333333, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.4666666666666667, \"f1-score\": 0.608695652173913, \"support\": 15.0}, \"4\": {\"precision\": 0.875, \"recall\": 0.6363636363636364, \"f1-score\": 0.7368421052631579, \"support\": 11.0}, \"5\": {\"precision\": 0.5, \"recall\": 0.8333333333333334, \"f1-score\": 0.625, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5476190476190477, \"recall\": 0.5476190476190477, \"f1-score\": 0.5476190476190477, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.3858842583146297, \"recall\": 0.3687606197221581, \"f1-score\": 0.36242698687173047, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.5968143446591722, \"recall\": 0.5476190476190477, \"f1-score\": 0.5482965963739509, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5476190476190477, \"recall\": 0.5476190476190477, \"f1-score\": 0.5476190476190477, \"support\": 126.0}}", "eval_f1_macro": 36.242698687173046, "eval_f1_micro": 54.761904761904766, "eval_f1_weighted": 54.82965963739509, "eval_loss": 0.35996922850608826, "eval_runtime": 2.497, "eval_samples_per_second": 50.461, "step": 496 }, { "epoch": 32.0, "learning_rate": 0.00028, "loss": 0.2261, "step": 512 }, { "epoch": 32.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 55.11195731186738, "eval_classification_report": "{\"0\": {\"precision\": 0.6428571428571429, \"recall\": 0.6923076923076923, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.6428571428571429, \"f1-score\": 0.5454545454545454, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.3333333333333333, \"f1-score\": 0.47619047619047616, \"support\": 15.0}, \"4\": {\"precision\": 0.75, \"recall\": 0.8181818181818182, \"f1-score\": 0.7826086956521738, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4039785221135336, \"recall\": 0.37504375965914427, \"f1-score\": 0.37733150186425807, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6355726055995753, \"recall\": 0.6111111111111112, \"f1-score\": 0.6049245683882147, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 37.73315018642581, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 60.492456838821475, "eval_loss": 0.34162217378616333, "eval_runtime": 2.2832, "eval_samples_per_second": 55.187, "step": 512 }, { "epoch": 33.0, "learning_rate": 0.00027833333333333334, "loss": 0.2039, "step": 528 }, { "epoch": 33.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 59.285239498534324, "eval_classification_report": "{\"0\": {\"precision\": 0.6944444444444444, \"recall\": 0.6410256410256411, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.47619047619047616, \"recall\": 0.7142857142857143, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.44690587190587194, \"recall\": 0.4393071671917826, \"f1-score\": 0.438557086717363, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6647306397306397, \"recall\": 0.6428571428571429, \"f1-score\": 0.6471382075097245, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 43.8557086717363, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.71382075097245, "eval_loss": 0.33223316073417664, "eval_runtime": 2.3062, "eval_samples_per_second": 54.635, "step": 528 }, { "epoch": 34.0, "learning_rate": 0.00027666666666666665, "loss": 0.1818, "step": 544 }, { "epoch": 34.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 58.24998721472892, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.6153846153846154, \"f1-score\": 0.64, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7, \"recall\": 0.5833333333333334, \"f1-score\": 0.6363636363636365, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.8571428571428571, \"recall\": 0.75, \"f1-score\": 0.7999999999999999, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4559132462978617, \"recall\": 0.431489237258468, \"f1-score\": 0.4397705228348183, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6576342455310709, \"recall\": 0.626984126984127, \"f1-score\": 0.6362607117860847, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 43.97705228348183, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.62607117860847, "eval_loss": 0.3464115262031555, "eval_runtime": 2.0343, "eval_samples_per_second": 61.937, "step": 544 }, { "epoch": 35.0, "learning_rate": 0.00027499999999999996, "loss": 0.1808, "step": 560 }, { "epoch": 35.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 55.22898041737425, "eval_classification_report": "{\"0\": {\"precision\": 0.5483870967741935, \"recall\": 0.8717948717948718, \"f1-score\": 0.6732673267326732, \"support\": 39.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.4375, \"f1-score\": 0.5185185185185185, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.2857142857142857, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.8571428571428571, \"recall\": 0.4, \"f1-score\": 0.5454545454545455, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.5714285714285714, \"recall\": 0.4444444444444444, \"f1-score\": 0.5, \"support\": 9.0}, \"7\": {\"precision\": 0.5714285714285714, \"recall\": 0.5, \"f1-score\": 0.5333333333333333, \"support\": 8.0}, \"8\": {\"precision\": 0.3333333333333333, \"recall\": 0.5, \"f1-score\": 0.4, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.43355891420407544, \"recall\": 0.37879246821554513, \"f1-score\": 0.39074343331769074, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6381508745564045, \"recall\": 0.6111111111111112, \"f1-score\": 0.5961935611550573, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 39.07434333176907, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 59.61935611550573, "eval_loss": 0.3788573741912842, "eval_runtime": 2.3703, "eval_samples_per_second": 53.158, "step": 560 }, { "epoch": 36.0, "learning_rate": 0.00027333333333333333, "loss": 0.1845, "step": 576 }, { "epoch": 36.0, "eval_accuracy": 58.730158730158735, "eval_average_metrics": 54.7512929189574, "eval_classification_report": "{\"0\": {\"precision\": 0.6486486486486487, \"recall\": 0.6153846153846154, \"f1-score\": 0.631578947368421, \"support\": 39.0}, \"1\": {\"precision\": 0.3125, \"recall\": 0.625, \"f1-score\": 0.4166666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.38461538461538464, \"recall\": 0.35714285714285715, \"f1-score\": 0.3703703703703704, \"support\": 14.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.4666666666666667, \"f1-score\": 0.608695652173913, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 0.5714285714285714, \"recall\": 0.4444444444444444, \"f1-score\": 0.5, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5873015873015873, \"recall\": 0.5873015873015873, \"f1-score\": 0.5873015873015873, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4496131063438756, \"recall\": 0.4065502873195181, \"f1-score\": 0.4159987619605335, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6473967622777147, \"recall\": 0.5873015873015873, \"f1-score\": 0.5994497801945877, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5873015873015873, \"recall\": 0.5873015873015873, \"f1-score\": 0.5873015873015873, \"support\": 126.0}}", "eval_f1_macro": 41.59987619605335, "eval_f1_micro": 58.730158730158735, "eval_f1_weighted": 59.94497801945877, "eval_loss": 0.399835467338562, "eval_runtime": 2.2165, "eval_samples_per_second": 56.846, "step": 576 }, { "epoch": 37.0, "learning_rate": 0.00027166666666666664, "loss": 0.1639, "step": 592 }, { "epoch": 37.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 62.56662862955547, "eval_classification_report": "{\"0\": {\"precision\": 0.6274509803921569, \"recall\": 0.8205128205128205, \"f1-score\": 0.711111111111111, \"support\": 39.0}, \"1\": {\"precision\": 0.8, \"recall\": 0.25, \"f1-score\": 0.38095238095238093, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.7142857142857143, \"f1-score\": 0.588235294117647, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5266454134101193, \"recall\": 0.44809250578481347, \"f1-score\": 0.4653896478409561, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7189164049458167, \"recall\": 0.6825396825396826, \"f1-score\": 0.6721961322618976, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 46.53896478409561, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.21961322618975, "eval_loss": 0.38062262535095215, "eval_runtime": 2.4874, "eval_samples_per_second": 50.655, "step": 592 }, { "epoch": 38.0, "learning_rate": 0.00027, "loss": 0.166, "step": 608 }, { "epoch": 38.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 56.646815695724335, "eval_classification_report": "{\"0\": {\"precision\": 0.625, \"recall\": 0.6410256410256411, \"f1-score\": 0.6329113924050633, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.6363636363636364, \"f1-score\": 0.7777777777777778, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7142857142857143, \"recall\": 0.5555555555555556, \"f1-score\": 0.6250000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.464010989010989, \"recall\": 0.40866974905436443, \"f1-score\": 0.4238498572724474, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6598418997228521, \"recall\": 0.6111111111111112, \"f1-score\": 0.6198005483343036, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 42.38498572724474, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 61.980054833430366, "eval_loss": 0.42026984691619873, "eval_runtime": 1.7518, "eval_samples_per_second": 71.924, "step": 608 }, { "epoch": 39.0, "learning_rate": 0.0002683333333333333, "loss": 0.1554, "step": 624 }, { "epoch": 39.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 57.32805017293678, "eval_classification_report": "{\"0\": {\"precision\": 0.6046511627906976, \"recall\": 0.6666666666666666, \"f1-score\": 0.6341463414634145, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5714285714285714, \"f1-score\": 0.5333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.6363636363636364, \"f1-score\": 0.7777777777777778, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.4444444444444444, \"f1-score\": 0.5333333333333333, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4600314414267903, \"recall\": 0.4197233322233322, \"f1-score\": 0.4305635001142061, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.653387697573744, \"recall\": 0.6190476190476191, \"f1-score\": 0.6244632687080269, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 43.056350011420605, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 62.44632687080269, "eval_loss": 0.3968574106693268, "eval_runtime": 2.373, "eval_samples_per_second": 53.097, "step": 624 }, { "epoch": 40.0, "learning_rate": 0.0002666666666666666, "loss": 0.1369, "step": 640 }, { "epoch": 40.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 56.5537589733679, "eval_classification_report": "{\"0\": {\"precision\": 0.6153846153846154, \"recall\": 0.8205128205128205, \"f1-score\": 0.7032967032967034, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.3333333333333333, \"f1-score\": 0.47619047619047616, \"support\": 15.0}, \"4\": {\"precision\": 0.75, \"recall\": 0.8181818181818182, \"f1-score\": 0.7826086956521738, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.4166666666666667, \"f1-score\": 0.5263157894736842, \"support\": 12.0}, \"6\": {\"precision\": 0.5, \"recall\": 0.6666666666666666, \"f1-score\": 0.5714285714285715, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.47621395698318775, \"recall\": 0.402610210302518, \"f1-score\": 0.41728589395218096, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.647612748803225, \"recall\": 0.6190476190476191, \"f1-score\": 0.606769226887297, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 41.728589395218094, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 60.6769226887297, "eval_loss": 0.4106070399284363, "eval_runtime": 2.7212, "eval_samples_per_second": 46.303, "step": 640 }, { "epoch": 41.0, "learning_rate": 0.000265, "loss": 0.1321, "step": 656 }, { "epoch": 41.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 58.04879433885844, "eval_classification_report": "{\"0\": {\"precision\": 0.6153846153846154, \"recall\": 0.6153846153846154, \"f1-score\": 0.6153846153846154, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.35714285714285715, \"f1-score\": 0.41666666666666663, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.6111111111111112, \"recall\": 0.9166666666666666, \"f1-score\": 0.7333333333333334, \"support\": 12.0}, \"6\": {\"precision\": 0.7142857142857143, \"recall\": 0.5555555555555556, \"f1-score\": 0.6250000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4542359350051658, \"recall\": 0.4368921676613985, \"f1-score\": 0.43950444527367605, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6456916099773243, \"recall\": 0.626984126984127, \"f1-score\": 0.6284790743124077, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 43.95044452736761, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 62.84790743124077, "eval_loss": 0.43157708644866943, "eval_runtime": 2.6109, "eval_samples_per_second": 48.258, "step": 656 }, { "epoch": 42.0, "learning_rate": 0.0002633333333333333, "loss": 0.1154, "step": 672 }, { "epoch": 42.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 64.73673672701662, "eval_classification_report": "{\"0\": {\"precision\": 0.66, \"recall\": 0.8461538461538461, \"f1-score\": 0.7415730337078651, \"support\": 39.0}, \"1\": {\"precision\": 0.6428571428571429, \"recall\": 0.5625, \"f1-score\": 0.6000000000000001, \"support\": 16.0}, \"2\": {\"precision\": 0.7, \"recall\": 0.5, \"f1-score\": 0.5833333333333334, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.5454545454545454, \"recall\": 0.6666666666666666, \"f1-score\": 0.6, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4948584748584749, \"recall\": 0.4610386408463331, \"f1-score\": 0.47179980120265763, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7252882567168282, \"recall\": 0.7063492063492064, \"f1-score\": 0.7049712551795945, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 47.17998012026576, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 70.49712551795945, "eval_loss": 0.3999994993209839, "eval_runtime": 3.0647, "eval_samples_per_second": 41.114, "step": 672 }, { "epoch": 43.0, "learning_rate": 0.00026166666666666667, "loss": 0.1007, "step": 688 }, { "epoch": 43.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 56.49609032891192, "eval_classification_report": "{\"0\": {\"precision\": 0.5652173913043478, \"recall\": 0.6666666666666666, \"f1-score\": 0.6117647058823529, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5714285714285714, \"f1-score\": 0.5333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.3333333333333333, \"f1-score\": 0.42857142857142855, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4547669721582765, \"recall\": 0.40464951714951714, \"f1-score\": 0.42134335742933027, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6434392729423785, \"recall\": 0.6111111111111112, \"f1-score\": 0.6162780335049243, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 42.134335742933025, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 61.62780335049243, "eval_loss": 0.45490285754203796, "eval_runtime": 2.9139, "eval_samples_per_second": 43.241, "step": 688 }, { "epoch": 44.0, "learning_rate": 0.00026, "loss": 0.1086, "step": 704 }, { "epoch": 44.0, "eval_accuracy": 57.936507936507944, "eval_average_metrics": 53.48035265255642, "eval_classification_report": "{\"0\": {\"precision\": 0.5531914893617021, \"recall\": 0.6666666666666666, \"f1-score\": 0.6046511627906976, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.6363636363636364, \"f1-score\": 0.7777777777777778, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.3333333333333333, \"f1-score\": 0.42857142857142855, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.375, \"f1-score\": 0.5, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4522562377308695, \"recall\": 0.37037962037962036, \"f1-score\": 0.39498821591844846, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6301618572304152, \"recall\": 0.5793650793650794, \"f1-score\": 0.5854957314536494, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}}", "eval_f1_macro": 39.498821591844845, "eval_f1_micro": 57.936507936507944, "eval_f1_weighted": 58.54957314536494, "eval_loss": 0.510620653629303, "eval_runtime": 3.0616, "eval_samples_per_second": 41.155, "step": 704 }, { "epoch": 45.0, "learning_rate": 0.00025833333333333334, "loss": 0.106, "step": 720 }, { "epoch": 45.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 57.97042461351431, "eval_classification_report": "{\"0\": {\"precision\": 0.6046511627906976, \"recall\": 0.6666666666666666, \"f1-score\": 0.6341463414634145, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.5454545454545454, \"recall\": 0.6666666666666666, \"f1-score\": 0.6, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.447517639439304, \"recall\": 0.43019896769896765, \"f1-score\": 0.43527001637585455, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6421576021331223, \"recall\": 0.626984126984127, \"f1-score\": 0.6295787141964636, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 43.52700163758546, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 62.95787141964636, "eval_loss": 0.4712595045566559, "eval_runtime": 2.414, "eval_samples_per_second": 52.195, "step": 720 }, { "epoch": 46.0, "learning_rate": 0.00025666666666666665, "loss": 0.0831, "step": 736 }, { "epoch": 46.0, "eval_accuracy": 58.730158730158735, "eval_average_metrics": 54.73648723416654, "eval_classification_report": "{\"0\": {\"precision\": 0.6052631578947368, \"recall\": 0.5897435897435898, \"f1-score\": 0.5974025974025974, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.5625, \"f1-score\": 0.4186046511627907, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.4666666666666667, \"f1-score\": 0.5833333333333334, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.4444444444444444, \"f1-score\": 0.5333333333333333, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5873015873015873, \"recall\": 0.5873015873015873, \"f1-score\": 0.5873015873015873, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4443151147098515, \"recall\": 0.40755409120793734, \"f1-score\": 0.41725158106827054, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.631986215538847, \"recall\": 0.5873015873015873, \"f1-score\": 0.5976047336952164, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5873015873015873, \"recall\": 0.5873015873015873, \"f1-score\": 0.5873015873015873, \"support\": 126.0}}", "eval_f1_macro": 41.72515810682705, "eval_f1_micro": 58.730158730158735, "eval_f1_weighted": 59.76047336952164, "eval_loss": 0.5125790238380432, "eval_runtime": 2.5356, "eval_samples_per_second": 49.692, "step": 736 }, { "epoch": 47.0, "learning_rate": 0.00025499999999999996, "loss": 0.0837, "step": 752 }, { "epoch": 47.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.19245324797434, "eval_classification_report": "{\"0\": {\"precision\": 0.6153846153846154, \"recall\": 0.6153846153846154, \"f1-score\": 0.6153846153846154, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.47058823529411764, \"recall\": 0.5714285714285714, \"f1-score\": 0.5161290322580646, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.49509425968701987, \"recall\": 0.44258508585431666, \"f1-score\": 0.4569113062289241, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6654669948787596, \"recall\": 0.6349206349206349, \"f1-score\": 0.6409455538487797, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 45.69113062289241, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.09455538487798, "eval_loss": 0.49303963780403137, "eval_runtime": 2.6485, "eval_samples_per_second": 47.574, "step": 752 }, { "epoch": 48.0, "learning_rate": 0.00025333333333333333, "loss": 0.0749, "step": 768 }, { "epoch": 48.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.24216876597829, "eval_classification_report": "{\"0\": {\"precision\": 0.6578947368421053, \"recall\": 0.6410256410256411, \"f1-score\": 0.6493506493506495, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.5625, \"f1-score\": 0.45, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4944465678271346, \"recall\": 0.4406197435043589, \"f1-score\": 0.45703185703185706, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6644325460114934, \"recall\": 0.6349206349206349, \"f1-score\": 0.6428136237660047, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 45.7031857031857, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.28136237660047, "eval_loss": 0.4822724461555481, "eval_runtime": 2.8209, "eval_samples_per_second": 44.667, "step": 768 }, { "epoch": 49.0, "learning_rate": 0.00025166666666666664, "loss": 0.068, "step": 784 }, { "epoch": 49.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.339191130399925, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.6363636363636364, \"recall\": 0.5, \"f1-score\": 0.56, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5074537502631149, \"recall\": 0.4544968919968919, \"f1-score\": 0.4702382233151464, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6869716032759511, \"recall\": 0.6587301587301587, \"f1-score\": 0.6658691044405329, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 47.023822331514644, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.58691044405329, "eval_loss": 0.507339596748352, "eval_runtime": 2.7487, "eval_samples_per_second": 45.84, "step": 784 }, { "epoch": 50.0, "learning_rate": 0.00025, "loss": 0.0668, "step": 800 }, { "epoch": 50.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 57.401489305089896, "eval_classification_report": "{\"0\": {\"precision\": 0.6585365853658537, \"recall\": 0.6923076923076923, \"f1-score\": 0.675, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.35714285714285715, \"f1-score\": 0.41666666666666663, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.25, \"f1-score\": 0.36363636363636365, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4458102247970916, \"recall\": 0.4084076180230026, \"f1-score\": 0.4158545175332834, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6496493698584291, \"recall\": 0.626984126984127, \"f1-score\": 0.6262368007020587, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 41.58545175332834, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 62.623680070205864, "eval_loss": 0.5342469215393066, "eval_runtime": 2.6686, "eval_samples_per_second": 47.215, "step": 800 }, { "epoch": 51.0, "learning_rate": 0.0002483333333333333, "loss": 0.0607, "step": 816 }, { "epoch": 51.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.39001498607046, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.6428571428571429, \"f1-score\": 0.5454545454545454, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5189607620957736, \"recall\": 0.4482850482850483, \"f1-score\": 0.4702640595026981, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7000309647007915, \"recall\": 0.6587301587301587, \"f1-score\": 0.667876222479803, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 47.02640595026981, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.78762224798031, "eval_loss": 0.5734530091285706, "eval_runtime": 2.8146, "eval_samples_per_second": 44.767, "step": 816 }, { "epoch": 52.0, "learning_rate": 0.0002466666666666666, "loss": 0.0668, "step": 832 }, { "epoch": 52.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.69522215676062, "eval_classification_report": "{\"0\": {\"precision\": 0.6530612244897959, \"recall\": 0.8205128205128205, \"f1-score\": 0.7272727272727272, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.5833333333333334, \"recall\": 0.7777777777777778, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5227296513010798, \"recall\": 0.4560290137213214, \"f1-score\": 0.47746996593150437, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7091726300909974, \"recall\": 0.6904761904761905, \"f1-score\": 0.6893865393865393, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 47.746996593150435, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.93865393865393, "eval_loss": 0.5639649033546448, "eval_runtime": 1.8932, "eval_samples_per_second": 66.555, "step": 832 }, { "epoch": 53.0, "learning_rate": 0.000245, "loss": 0.0638, "step": 848 }, { "epoch": 53.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 56.74682895501711, "eval_classification_report": "{\"0\": {\"precision\": 0.5813953488372093, \"recall\": 0.6410256410256411, \"f1-score\": 0.6097560975609757, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.42857142857142855, \"f1-score\": 0.42857142857142855, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.4444444444444444, \"f1-score\": 0.5333333333333333, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4597410341596388, \"recall\": 0.41145307683769217, \"f1-score\": 0.42922199751468043, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6417281899840039, \"recall\": 0.6111111111111112, \"f1-score\": 0.6184289384637816, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 42.92219975146804, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 61.84289384637815, "eval_loss": 0.5989120602607727, "eval_runtime": 2.1667, "eval_samples_per_second": 58.152, "step": 848 }, { "epoch": 54.0, "learning_rate": 0.0002433333333333333, "loss": 0.0532, "step": 864 }, { "epoch": 54.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.56295168168675, "eval_classification_report": "{\"0\": {\"precision\": 0.7058823529411765, \"recall\": 0.6153846153846154, \"f1-score\": 0.6575342465753424, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.65, \"recall\": 0.8666666666666667, \"f1-score\": 0.7428571428571429, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.8333333333333334, \"f1-score\": 0.8333333333333334, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.46476872800402214, \"recall\": 0.4623500431192739, \"f1-score\": 0.4606222345493485, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6798410104782654, \"recall\": 0.6666666666666666, \"f1-score\": 0.6685624993847885, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.062223454934845, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.85624993847885, "eval_loss": 0.6019434928894043, "eval_runtime": 2.0246, "eval_samples_per_second": 62.234, "step": 864 }, { "epoch": 55.0, "learning_rate": 0.00024166666666666664, "loss": 0.0524, "step": 880 }, { "epoch": 55.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.06348714120533, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5333333333333333, \"recall\": 0.5714285714285714, \"f1-score\": 0.5517241379310344, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5003600058478107, \"recall\": 0.44385070058146986, \"f1-score\": 0.4609068569880258, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6854287021534408, \"recall\": 0.6587301587301587, \"f1-score\": 0.6641723111998699, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 46.09068569880258, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.41723111998698, "eval_loss": 0.5611535906791687, "eval_runtime": 1.8766, "eval_samples_per_second": 67.144, "step": 880 }, { "epoch": 56.0, "learning_rate": 0.00023999999999999998, "loss": 0.0568, "step": 896 }, { "epoch": 56.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.23472953156576, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.4666666666666667, \"recall\": 0.4375, \"f1-score\": 0.45161290322580644, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.6428571428571429, \"f1-score\": 0.5625000000000001, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.47335944230878557, \"recall\": 0.45896059069135997, \"f1-score\": 0.46331440478462815, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6873357897748141, \"recall\": 0.6746031746031746, \"f1-score\": 0.6768684272716531, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.33144047846282, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.68684272716531, "eval_loss": 0.5656365752220154, "eval_runtime": 1.8609, "eval_samples_per_second": 67.708, "step": 896 }, { "epoch": 57.0, "learning_rate": 0.0002383333333333333, "loss": 0.0466, "step": 912 }, { "epoch": 57.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.17970011834984, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.717948717948718, \"f1-score\": 0.691358024691358, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.5454545454545454, \"recall\": 0.6666666666666666, \"f1-score\": 0.6, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.47228473281104866, \"recall\": 0.4559386126693819, \"f1-score\": 0.46129793263726293, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6864439236619688, \"recall\": 0.6746031746031746, \"f1-score\": 0.6766837228903814, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.12979326372629, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.66837228903813, "eval_loss": 0.5672734975814819, "eval_runtime": 1.7191, "eval_samples_per_second": 73.296, "step": 912 }, { "epoch": 58.0, "learning_rate": 0.00023666666666666663, "loss": 0.0423, "step": 928 }, { "epoch": 58.0, "eval_accuracy": 57.936507936507944, "eval_average_metrics": 53.916602961947945, "eval_classification_report": "{\"0\": {\"precision\": 0.6764705882352942, \"recall\": 0.5897435897435898, \"f1-score\": 0.6301369863013699, \"support\": 39.0}, \"1\": {\"precision\": 0.28125, \"recall\": 0.5625, \"f1-score\": 0.375, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.2857142857142857, \"f1-score\": 0.34782608695652173, \"support\": 14.0}, \"3\": {\"precision\": 0.625, \"recall\": 0.6666666666666666, \"f1-score\": 0.6451612903225806, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.5714285714285714, \"recall\": 0.4444444444444444, \"f1-score\": 0.5, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4309052467140702, \"recall\": 0.3968398054936516, \"f1-score\": 0.4064491268688275, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6262173387873669, \"recall\": 0.5793650793650794, \"f1-score\": 0.5914848328789313, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5793650793650794, \"recall\": 0.5793650793650794, \"f1-score\": 0.5793650793650794, \"support\": 126.0}}", "eval_f1_macro": 40.64491268688275, "eval_f1_micro": 57.936507936507944, "eval_f1_weighted": 59.14848328789313, "eval_loss": 0.6551306247711182, "eval_runtime": 1.9331, "eval_samples_per_second": 65.181, "step": 928 }, { "epoch": 59.0, "learning_rate": 0.00023499999999999997, "loss": 0.0457, "step": 944 }, { "epoch": 59.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 59.47735205420594, "eval_classification_report": "{\"0\": {\"precision\": 0.65, \"recall\": 0.6666666666666666, \"f1-score\": 0.6582278481012659, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.2857142857142857, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.5384615384615384, \"recall\": 0.7777777777777778, \"f1-score\": 0.6363636363636364, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.48582571274878966, \"recall\": 0.43993645243645246, \"f1-score\": 0.45104751033931684, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6584110334110335, \"recall\": 0.6428571428571429, \"f1-score\": 0.6423322861146351, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 45.104751033931684, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.23322861146352, "eval_loss": 0.5840875506401062, "eval_runtime": 1.8121, "eval_samples_per_second": 69.533, "step": 944 }, { "epoch": 60.0, "learning_rate": 0.0002333333333333333, "loss": 0.0372, "step": 960 }, { "epoch": 60.0, "eval_accuracy": 60.317460317460316, "eval_average_metrics": 56.7107165321451, "eval_classification_report": "{\"0\": {\"precision\": 0.6774193548387096, \"recall\": 0.5384615384615384, \"f1-score\": 0.6, \"support\": 39.0}, \"1\": {\"precision\": 0.3103448275862069, \"recall\": 0.5625, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.35714285714285715, \"recall\": 0.35714285714285715, \"f1-score\": 0.35714285714285715, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.48423770690391726, \"recall\": 0.4325775720006489, \"f1-score\": 0.4456876456876457, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6526795185145734, \"recall\": 0.6031746031746031, \"f1-score\": 0.6163918092489521, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}}", "eval_f1_macro": 44.56876456876457, "eval_f1_micro": 60.317460317460316, "eval_f1_weighted": 61.63918092489521, "eval_loss": 0.6143901348114014, "eval_runtime": 2.1161, "eval_samples_per_second": 59.543, "step": 960 }, { "epoch": 61.0, "learning_rate": 0.00023166666666666667, "loss": 0.042, "step": 976 }, { "epoch": 61.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 55.94252337895228, "eval_classification_report": "{\"0\": {\"precision\": 0.6428571428571429, \"recall\": 0.6923076923076923, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.36, \"recall\": 0.5625, \"f1-score\": 0.43902439024390244, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.14285714285714285, \"f1-score\": 0.21052631578947364, \"support\": 14.0}, \"3\": {\"precision\": 0.6875, \"recall\": 0.7333333333333333, \"f1-score\": 0.7096774193548386, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.42874542124542125, \"recall\": 0.4106206827360674, \"f1-score\": 0.41194306703230466, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6188671579743009, \"recall\": 0.6111111111111112, \"f1-score\": 0.6035356459035641, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 41.19430670323047, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 60.35356459035641, "eval_loss": 0.6281301975250244, "eval_runtime": 2.4441, "eval_samples_per_second": 51.553, "step": 976 }, { "epoch": 62.0, "learning_rate": 0.00023, "loss": 0.0371, "step": 992 }, { "epoch": 62.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 56.58553367784089, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.717948717948718, \"f1-score\": 0.691358024691358, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.14285714285714285, \"f1-score\": 0.21052631578947364, \"support\": 14.0}, \"3\": {\"precision\": 0.6875, \"recall\": 0.7333333333333333, \"f1-score\": 0.7096774193548386, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.5555555555555556, \"recall\": 0.5555555555555556, \"f1-score\": 0.5555555555555556, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.43778490028490025, \"recall\": 0.40778537701614626, \"f1-score\": 0.41310221788894086, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6328446502057613, \"recall\": 0.6190476190476191, \"f1-score\": 0.6122238911294571, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 41.31022178889408, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 61.222389112945706, "eval_loss": 0.6464196443557739, "eval_runtime": 2.6398, "eval_samples_per_second": 47.732, "step": 992 }, { "epoch": 63.0, "learning_rate": 0.0002283333333333333, "loss": 0.039, "step": 1008 }, { "epoch": 63.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.13108229938139, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6410256410256411, \"f1-score\": 0.6756756756756757, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.625, \"f1-score\": 0.43478260869565216, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.5333333333333333, \"recall\": 0.8888888888888888, \"f1-score\": 0.6666666666666667, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5057833192448578, \"recall\": 0.4356594260440414, \"f1-score\": 0.45040616378409026, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6926899819756963, \"recall\": 0.6349206349206349, \"f1-score\": 0.6449958583498955, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 45.04061637840903, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.49958583498955, "eval_loss": 0.6677725315093994, "eval_runtime": 2.7082, "eval_samples_per_second": 46.526, "step": 1008 }, { "epoch": 64.0, "learning_rate": 0.00022666666666666663, "loss": 0.0316, "step": 1024 }, { "epoch": 64.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 60.38081506555464, "eval_classification_report": "{\"0\": {\"precision\": 0.696969696969697, \"recall\": 0.5897435897435898, \"f1-score\": 0.638888888888889, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.5625, \"f1-score\": 0.45, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.47970118117176946, \"recall\": 0.4836224672763134, \"f1-score\": 0.4755598124602901, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6779013625652281, \"recall\": 0.6428571428571429, \"f1-score\": 0.6539585044476098, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 47.55598124602901, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.39585044476098, "eval_loss": 0.63810795545578, "eval_runtime": 2.6994, "eval_samples_per_second": 46.677, "step": 1024 }, { "epoch": 65.0, "learning_rate": 0.000225, "loss": 0.0366, "step": 1040 }, { "epoch": 65.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.455293557737164, "eval_classification_report": "{\"0\": {\"precision\": 0.6944444444444444, \"recall\": 0.6410256410256411, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.3888888888888889, \"recall\": 0.5, \"f1-score\": 0.43750000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.6666666666666666, \"f1-score\": 0.631578947368421, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4724941724941725, \"recall\": 0.46769544558006093, \"f1-score\": 0.4628965332912701, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6692320025653359, \"recall\": 0.6349206349206349, \"f1-score\": 0.6454739391769466, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 46.28965332912701, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.54739391769466, "eval_loss": 0.6522918939590454, "eval_runtime": 2.9196, "eval_samples_per_second": 43.156, "step": 1040 }, { "epoch": 66.0, "learning_rate": 0.00022333333333333333, "loss": 0.0307, "step": 1056 }, { "epoch": 66.0, "eval_accuracy": 61.111111111111114, "eval_average_metrics": 56.46095086571277, "eval_classification_report": "{\"0\": {\"precision\": 0.6122448979591837, \"recall\": 0.7692307692307693, \"f1-score\": 0.6818181818181818, \"support\": 39.0}, \"1\": {\"precision\": 0.3448275862068966, \"recall\": 0.625, \"f1-score\": 0.4444444444444445, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.8571428571428571, \"recall\": 0.4, \"f1-score\": 0.5454545454545455, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4997503864498938, \"recall\": 0.39600975947129796, \"f1-score\": 0.42493062493062495, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6660206501867304, \"recall\": 0.6111111111111112, \"f1-score\": 0.6112851874756636, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6111111111111112, \"recall\": 0.6111111111111112, \"f1-score\": 0.6111111111111112, \"support\": 126.0}}", "eval_f1_macro": 42.493062493062496, "eval_f1_micro": 61.111111111111114, "eval_f1_weighted": 61.12851874756636, "eval_loss": 0.7214852571487427, "eval_runtime": 2.5701, "eval_samples_per_second": 49.026, "step": 1056 }, { "epoch": 67.0, "learning_rate": 0.00022166666666666667, "loss": 0.027, "step": 1072 }, { "epoch": 67.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.58224306238857, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.36, \"recall\": 0.5625, \"f1-score\": 0.43902439024390244, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.75, \"recall\": 0.8181818181818182, \"f1-score\": 0.7826086956521738, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.5833333333333334, \"f1-score\": 0.7368421052631579, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5086446886446887, \"recall\": 0.44772033522033516, \"f1-score\": 0.4644054861085306, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6864739229024943, \"recall\": 0.6507936507936508, \"f1-score\": 0.6572969347997109, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 46.440548610853064, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.72969347997109, "eval_loss": 0.700626015663147, "eval_runtime": 2.6896, "eval_samples_per_second": 46.847, "step": 1072 }, { "epoch": 68.0, "learning_rate": 0.00021999999999999995, "loss": 0.0271, "step": 1088 }, { "epoch": 68.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 58.242719685027375, "eval_classification_report": "{\"0\": {\"precision\": 0.6285714285714286, \"recall\": 0.5641025641025641, \"f1-score\": 0.5945945945945945, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.3684210526315789, \"recall\": 0.5, \"f1-score\": 0.4242424242424242, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.8333333333333334, \"recall\": 0.5555555555555556, \"f1-score\": 0.6666666666666667, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.47615347159441507, \"recall\": 0.4660517900902516, \"f1-score\": 0.46200126969357735, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.658604488630641, \"recall\": 0.6190476190476191, \"f1-score\": 0.6296122796122796, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 46.20012696935773, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 62.96122796122796, "eval_loss": 0.7123138308525085, "eval_runtime": 2.5053, "eval_samples_per_second": 50.293, "step": 1088 }, { "epoch": 69.0, "learning_rate": 0.0002183333333333333, "loss": 0.026, "step": 1104 }, { "epoch": 69.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 60.67602519808403, "eval_classification_report": "{\"0\": {\"precision\": 0.6326530612244898, \"recall\": 0.7948717948717948, \"f1-score\": 0.7045454545454547, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5083115297401012, \"recall\": 0.42843086400778707, \"f1-score\": 0.4547076929429871, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6772081848612461, \"recall\": 0.6587301587301587, \"f1-score\": 0.6548729975200563, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 45.470769294298705, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 65.48729975200564, "eval_loss": 0.678918182849884, "eval_runtime": 2.365, "eval_samples_per_second": 53.277, "step": 1104 }, { "epoch": 70.0, "learning_rate": 0.00021666666666666666, "loss": 0.0196, "step": 1120 }, { "epoch": 70.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.56329674781201, "eval_classification_report": "{\"0\": {\"precision\": 0.6511627906976745, \"recall\": 0.717948717948718, \"f1-score\": 0.6829268292682927, \"support\": 39.0}, \"1\": {\"precision\": 0.47058823529411764, \"recall\": 0.5, \"f1-score\": 0.48484848484848486, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7777777777777778, \"recall\": 0.5833333333333334, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.8571428571428571, \"recall\": 0.75, \"f1-score\": 0.7999999999999999, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5169497595836646, \"recall\": 0.4826327518635211, \"f1-score\": 0.4965084652315642, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6875073059767868, \"recall\": 0.6666666666666666, \"f1-score\": 0.6726900713475831, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 49.650846523156424, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.26900713475831, "eval_loss": 0.6874014139175415, "eval_runtime": 2.4596, "eval_samples_per_second": 51.227, "step": 1120 }, { "epoch": 71.0, "learning_rate": 0.000215, "loss": 0.0377, "step": 1136 }, { "epoch": 71.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.43046183568161, "eval_classification_report": "{\"0\": {\"precision\": 0.6326530612244898, \"recall\": 0.7948717948717948, \"f1-score\": 0.7045454545454547, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.375, \"f1-score\": 0.42857142857142855, \"support\": 16.0}, \"2\": {\"precision\": 0.5833333333333334, \"recall\": 0.5, \"f1-score\": 0.5384615384615384, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.500180771609343, \"recall\": 0.44480754288446595, \"f1-score\": 0.4614500883731653, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6763286411245596, \"recall\": 0.6666666666666666, \"f1-score\": 0.6624350517207659, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.14500883731653, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.2435051720766, "eval_loss": 0.7013852000236511, "eval_runtime": 2.5965, "eval_samples_per_second": 48.527, "step": 1136 }, { "epoch": 72.0, "learning_rate": 0.00021333333333333333, "loss": 0.0216, "step": 1152 }, { "epoch": 72.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.206448230122504, "eval_classification_report": "{\"0\": {\"precision\": 0.6382978723404256, \"recall\": 0.7692307692307693, \"f1-score\": 0.6976744186046512, \"support\": 39.0}, \"1\": {\"precision\": 0.5294117647058824, \"recall\": 0.5625, \"f1-score\": 0.5454545454545455, \"support\": 16.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.35714285714285715, \"f1-score\": 0.43478260869565216, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.49184700871906034, \"recall\": 0.4877222136837522, \"f1-score\": 0.4835823606596223, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.68980391315602, \"recall\": 0.6825396825396826, \"f1-score\": 0.6795962034659131, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 48.35823606596223, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.95962034659131, "eval_loss": 0.6801834106445312, "eval_runtime": 2.5997, "eval_samples_per_second": 48.468, "step": 1152 }, { "epoch": 73.0, "learning_rate": 0.00021166666666666667, "loss": 0.0271, "step": 1168 }, { "epoch": 73.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.75283339548662, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.6153846153846154, \"recall\": 0.5, \"f1-score\": 0.5517241379310345, \"support\": 16.0}, \"2\": {\"precision\": 0.6153846153846154, \"recall\": 0.5714285714285714, \"f1-score\": 0.5925925925925927, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.75, \"recall\": 0.8181818181818182, \"f1-score\": 0.7826086956521738, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.5454545454545454, \"recall\": 0.75, \"f1-score\": 0.631578947368421, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4734066746261868, \"recall\": 0.4974256512718051, \"f1-score\": 0.4805434961652905, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6932580743556352, \"recall\": 0.6904761904761905, \"f1-score\": 0.688617458701793, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 48.05434961652905, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.8617458701793, "eval_loss": 0.6781265735626221, "eval_runtime": 2.3784, "eval_samples_per_second": 52.977, "step": 1168 }, { "epoch": 74.0, "learning_rate": 0.00020999999999999998, "loss": 0.0175, "step": 1184 }, { "epoch": 74.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.49669777899186, "eval_classification_report": "{\"0\": {\"precision\": 0.6428571428571429, \"recall\": 0.6923076923076923, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.6153846153846154, \"recall\": 0.5714285714285714, \"f1-score\": 0.5925925925925927, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5065197622889931, \"recall\": 0.4564082285236131, \"f1-score\": 0.47435829775983235, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.682777738134881, \"recall\": 0.6746031746031746, \"f1-score\": 0.6763032641934927, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 47.43582977598324, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.63032641934927, "eval_loss": 0.662513017654419, "eval_runtime": 2.4752, "eval_samples_per_second": 50.905, "step": 1184 }, { "epoch": 75.0, "learning_rate": 0.00020833333333333332, "loss": 0.0193, "step": 1200 }, { "epoch": 75.0, "eval_accuracy": 60.317460317460316, "eval_average_metrics": 56.322773153824855, "eval_classification_report": "{\"0\": {\"precision\": 0.6470588235294118, \"recall\": 0.5641025641025641, \"f1-score\": 0.6027397260273972, \"support\": 39.0}, \"1\": {\"precision\": 0.3684210526315789, \"recall\": 0.4375, \"f1-score\": 0.39999999999999997, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.5714285714285714, \"f1-score\": 0.47058823529411764, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4701051786191105, \"recall\": 0.4245377485762101, \"f1-score\": 0.4361844275685471, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6329755772590803, \"recall\": 0.6031746031746031, \"f1-score\": 0.6103772922352408, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}}", "eval_f1_macro": 43.618442756854705, "eval_f1_micro": 60.317460317460316, "eval_f1_weighted": 61.03772922352408, "eval_loss": 0.741892397403717, "eval_runtime": 2.5772, "eval_samples_per_second": 48.891, "step": 1200 }, { "epoch": 76.0, "learning_rate": 0.00020666666666666666, "loss": 0.0199, "step": 1216 }, { "epoch": 76.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 58.31051418236292, "eval_classification_report": "{\"0\": {\"precision\": 0.6842105263157895, \"recall\": 0.6666666666666666, \"f1-score\": 0.6753246753246753, \"support\": 39.0}, \"1\": {\"precision\": 0.34615384615384615, \"recall\": 0.5625, \"f1-score\": 0.4285714285714286, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.2857142857142857, \"f1-score\": 0.3333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4824833511068328, \"recall\": 0.4328851703851704, \"f1-score\": 0.44580713404242817, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6563487681908734, \"recall\": 0.626984126984127, \"f1-score\": 0.6326451792838348, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 44.580713404242815, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.264517928383476, "eval_loss": 0.7456138730049133, "eval_runtime": 2.3807, "eval_samples_per_second": 52.925, "step": 1216 }, { "epoch": 77.0, "learning_rate": 0.000205, "loss": 0.0199, "step": 1232 }, { "epoch": 77.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.17043375236652, "eval_classification_report": "{\"0\": {\"precision\": 0.6304347826086957, \"recall\": 0.7435897435897436, \"f1-score\": 0.6823529411764706, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.35714285714285715, \"f1-score\": 0.41666666666666663, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.625, \"recall\": 0.5555555555555556, \"f1-score\": 0.5882352941176471, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4954870937312409, \"recall\": 0.4323310236771775, \"f1-score\": 0.45395095100977456, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6657440586788413, \"recall\": 0.6507936507936508, \"f1-score\": 0.6512790974975848, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 45.39509510097746, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.12790974975849, "eval_loss": 0.74698406457901, "eval_runtime": 2.3036, "eval_samples_per_second": 54.698, "step": 1232 }, { "epoch": 78.0, "learning_rate": 0.00020333333333333333, "loss": 0.0204, "step": 1248 }, { "epoch": 78.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.08454275858929, "eval_classification_report": "{\"0\": {\"precision\": 0.6842105263157895, \"recall\": 0.6666666666666666, \"f1-score\": 0.6753246753246753, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.5625, \"f1-score\": 0.45, \"support\": 16.0}, \"2\": {\"precision\": 0.4166666666666667, \"recall\": 0.35714285714285715, \"f1-score\": 0.3846153846153846, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4868390381548276, \"recall\": 0.43837967587967586, \"f1-score\": 0.45203295949902284, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6621281739702793, \"recall\": 0.6349206349206349, \"f1-score\": 0.6415074810032794, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 45.203295949902284, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.15074810032793, "eval_loss": 0.7189117670059204, "eval_runtime": 2.4665, "eval_samples_per_second": 51.085, "step": 1248 }, { "epoch": 79.0, "learning_rate": 0.00020166666666666667, "loss": 0.0182, "step": 1264 }, { "epoch": 79.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 60.20124931808836, "eval_classification_report": "{\"0\": {\"precision\": 0.6944444444444444, \"recall\": 0.6410256410256411, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.375, \"recall\": 0.42857142857142855, \"f1-score\": 0.39999999999999997, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4750304043782305, \"recall\": 0.478809331693947, \"f1-score\": 0.4709038322160494, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6713825626869104, \"recall\": 0.6428571428571429, \"f1-score\": 0.6514318547931993, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 47.090383221604945, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.14318547931992, "eval_loss": 0.7444010972976685, "eval_runtime": 2.3048, "eval_samples_per_second": 54.667, "step": 1264 }, { "epoch": 80.0, "learning_rate": 0.00019999999999999998, "loss": 0.0223, "step": 1280 }, { "epoch": 80.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 60.60206507140343, "eval_classification_report": "{\"0\": {\"precision\": 0.65, \"recall\": 0.6666666666666666, \"f1-score\": 0.6582278481012659, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.38095238095238093, \"recall\": 0.5714285714285714, \"f1-score\": 0.4571428571428571, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5101969667759142, \"recall\": 0.4692862692862692, \"f1-score\": 0.4843109980116681, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6789299637983848, \"recall\": 0.6428571428571429, \"f1-score\": 0.6540573191301837, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 48.43109980116681, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.40573191301837, "eval_loss": 0.7256574034690857, "eval_runtime": 2.8214, "eval_samples_per_second": 44.658, "step": 1280 }, { "epoch": 81.0, "learning_rate": 0.00019833333333333332, "loss": 0.0191, "step": 1296 }, { "epoch": 81.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.11131665954946, "eval_classification_report": "{\"0\": {\"precision\": 0.62, \"recall\": 0.7948717948717948, \"f1-score\": 0.6966292134831461, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.6363636363636364, \"recall\": 0.5, \"f1-score\": 0.56, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5219347319347319, \"recall\": 0.45570497878190186, \"f1-score\": 0.47878925605444805, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6956325156325157, \"recall\": 0.6825396825396826, \"f1-score\": 0.6805840452481651, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.878925605444806, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.05840452481651, "eval_loss": 0.7393060326576233, "eval_runtime": 2.5363, "eval_samples_per_second": 49.678, "step": 1296 }, { "epoch": 82.0, "learning_rate": 0.00019666666666666666, "loss": 0.0178, "step": 1312 }, { "epoch": 82.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.12664475331127, "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6410256410256411, \"f1-score\": 0.6849315068493151, \"support\": 39.0}, \"1\": {\"precision\": 0.39285714285714285, \"recall\": 0.6875, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.8333333333333334, \"recall\": 0.9090909090909091, \"f1-score\": 0.8695652173913043, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.48829601770778247, \"recall\": 0.450726303610919, \"f1-score\": 0.45420614418644384, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6777130043936767, \"recall\": 0.6507936507936508, \"f1-score\": 0.6492723443587053, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 45.420614418644384, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 64.92723443587053, "eval_loss": 0.796004593372345, "eval_runtime": 2.3602, "eval_samples_per_second": 53.385, "step": 1312 }, { "epoch": 83.0, "learning_rate": 0.000195, "loss": 0.0141, "step": 1328 }, { "epoch": 83.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.89056044707385, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.4666666666666667, \"recall\": 0.5, \"f1-score\": 0.4827586206896552, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5191697191697192, \"recall\": 0.4905422568884107, \"f1-score\": 0.5021616102075872, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7017951625094482, \"recall\": 0.6825396825396826, \"f1-score\": 0.688381442596002, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 50.21616102075872, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.8381442596002, "eval_loss": 0.7645090818405151, "eval_runtime": 2.3573, "eval_samples_per_second": 53.452, "step": 1328 }, { "epoch": 84.0, "learning_rate": 0.00019333333333333333, "loss": 0.0151, "step": 1344 }, { "epoch": 84.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.704635101623424, "eval_classification_report": "{\"0\": {\"precision\": 0.6458333333333334, \"recall\": 0.7948717948717948, \"f1-score\": 0.7126436781609194, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5070180550443708, \"recall\": 0.4742489348258579, \"f1-score\": 0.4859350454898834, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6881656477051215, \"recall\": 0.6746031746031746, \"f1-score\": 0.6730440093687041, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 48.59350454898834, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.30440093687041, "eval_loss": 0.7784988284111023, "eval_runtime": 1.9797, "eval_samples_per_second": 63.645, "step": 1344 }, { "epoch": 85.0, "learning_rate": 0.00019166666666666665, "loss": 0.0131, "step": 1360 }, { "epoch": 85.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 59.6962228349591, "eval_classification_report": "{\"0\": {\"precision\": 0.6923076923076923, \"recall\": 0.6923076923076923, \"f1-score\": 0.6923076923076923, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.5625, \"f1-score\": 0.45, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.48981232442770906, \"recall\": 0.4362311833465679, \"f1-score\": 0.45240208509439284, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.670983645983646, \"recall\": 0.6428571428571429, \"f1-score\": 0.6497325425896855, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 45.240208509439285, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.97325425896855, "eval_loss": 0.7907289862632751, "eval_runtime": 2.2833, "eval_samples_per_second": 55.182, "step": 1360 }, { "epoch": 86.0, "learning_rate": 0.00018999999999999998, "loss": 0.0109, "step": 1376 }, { "epoch": 86.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 60.93836881474244, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5004349309227358, \"recall\": 0.4432249374557067, \"f1-score\": 0.4592853300545609, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6815841340231584, \"recall\": 0.6587301587301587, \"f1-score\": 0.6607891050748194, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 45.92853300545609, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.07891050748194, "eval_loss": 0.792351245880127, "eval_runtime": 2.9326, "eval_samples_per_second": 42.965, "step": 1376 }, { "epoch": 87.0, "learning_rate": 0.00018833333333333332, "loss": 0.0114, "step": 1392 }, { "epoch": 87.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.20300586803413, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.35714285714285715, \"f1-score\": 0.43478260869565216, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.375, \"f1-score\": 0.42857142857142855, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4874236874236874, \"recall\": 0.43750853847007687, \"f1-score\": 0.4518181170783289, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6730250349297969, \"recall\": 0.6666666666666666, \"f1-score\": 0.6629687843097034, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 45.18181170783289, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.29687843097034, "eval_loss": 0.7755988240242004, "eval_runtime": 2.7395, "eval_samples_per_second": 45.994, "step": 1392 }, { "epoch": 88.0, "learning_rate": 0.00018666666666666666, "loss": 0.0187, "step": 1408 }, { "epoch": 88.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 60.61768004075696, "eval_classification_report": "{\"0\": {\"precision\": 0.5961538461538461, \"recall\": 0.7948717948717948, \"f1-score\": 0.6813186813186813, \"support\": 39.0}, \"1\": {\"precision\": 0.6428571428571429, \"recall\": 0.5625, \"f1-score\": 0.6000000000000001, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4965905888982812, \"recall\": 0.4259583365352596, \"f1-score\": 0.45121032813340506, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.672108843537415, \"recall\": 0.6587301587301587, \"f1-score\": 0.6560365560365561, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 45.121032813340506, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 65.60365560365561, "eval_loss": 0.8117024898529053, "eval_runtime": 2.7035, "eval_samples_per_second": 46.607, "step": 1408 }, { "epoch": 89.0, "learning_rate": 0.000185, "loss": 0.0155, "step": 1424 }, { "epoch": 89.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.22509309553844, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5833333333333334, \"recall\": 0.5, \"f1-score\": 0.5384615384615384, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.5454545454545454, \"recall\": 0.75, \"f1-score\": 0.631578947368421, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5007770007770008, \"recall\": 0.45089653935807783, \"f1-score\": 0.46579399008548805, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6860870610870611, \"recall\": 0.6746031746031746, \"f1-score\": 0.6740033845297003, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.579399008548805, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.40033845297003, "eval_loss": 0.7915906310081482, "eval_runtime": 2.5553, "eval_samples_per_second": 49.309, "step": 1424 }, { "epoch": 90.0, "learning_rate": 0.00018333333333333334, "loss": 0.0119, "step": 1440 }, { "epoch": 90.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 59.48809643079018, "eval_classification_report": "{\"0\": {\"precision\": 0.6304347826086957, \"recall\": 0.7435897435897436, \"f1-score\": 0.6823529411764706, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.5714285714285714, \"recall\": 0.4444444444444444, \"f1-score\": 0.5, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.49482963153531717, \"recall\": 0.42002943637559026, \"f1-score\": 0.4467381570322747, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6670006724354551, \"recall\": 0.6428571428571429, \"f1-score\": 0.6470714144850467, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 44.67381570322747, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.70714144850467, "eval_loss": 0.7919452786445618, "eval_runtime": 2.3732, "eval_samples_per_second": 53.092, "step": 1440 }, { "epoch": 91.0, "learning_rate": 0.00018166666666666665, "loss": 0.0121, "step": 1456 }, { "epoch": 91.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.49346229724179, "eval_classification_report": "{\"0\": {\"precision\": 0.6923076923076923, \"recall\": 0.6923076923076923, \"f1-score\": 0.6923076923076923, \"support\": 39.0}, \"1\": {\"precision\": 0.36, \"recall\": 0.5625, \"f1-score\": 0.43902439024390244, \"support\": 16.0}, \"2\": {\"precision\": 0.45454545454545453, \"recall\": 0.35714285714285715, \"f1-score\": 0.4, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.8333333333333334, \"f1-score\": 0.8333333333333334, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.498720638336023, \"recall\": 0.4435571906725752, \"f1-score\": 0.46042168308634196, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.68012987012987, \"recall\": 0.6507936507936508, \"f1-score\": 0.6577295072160283, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 46.042168308634196, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.77295072160283, "eval_loss": 0.8077821731567383, "eval_runtime": 2.7129, "eval_samples_per_second": 46.445, "step": 1456 }, { "epoch": 92.0, "learning_rate": 0.00017999999999999998, "loss": 0.0163, "step": 1472 }, { "epoch": 92.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.483764565863865, "eval_classification_report": "{\"0\": {\"precision\": 0.6511627906976745, \"recall\": 0.717948717948718, \"f1-score\": 0.6829268292682927, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.42105263157894735, \"recall\": 0.5714285714285714, \"f1-score\": 0.48484848484848486, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7142857142857143, \"recall\": 0.5555555555555556, \"f1-score\": 0.6250000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5087199961740965, \"recall\": 0.43209856382933304, \"f1-score\": 0.45915121463901953, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.681972673470313, \"recall\": 0.6507936507936508, \"f1-score\": 0.6586120664082336, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 45.915121463901954, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.86120664082335, "eval_loss": 0.8109867572784424, "eval_runtime": 3.0888, "eval_samples_per_second": 40.793, "step": 1472 }, { "epoch": 93.0, "learning_rate": 0.00017833333333333332, "loss": 0.0126, "step": 1488 }, { "epoch": 93.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.16852993363982, "eval_classification_report": "{\"0\": {\"precision\": 0.7317073170731707, \"recall\": 0.7692307692307693, \"f1-score\": 0.7499999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.5714285714285714, \"recall\": 0.5, \"f1-score\": 0.5333333333333333, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.490627657619363, \"recall\": 0.4871880256495641, \"f1-score\": 0.4843630728246113, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6845254023642068, \"recall\": 0.6825396825396826, \"f1-score\": 0.6772987594416165, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 48.43630728246113, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.72987594416165, "eval_loss": 0.8014038801193237, "eval_runtime": 2.5596, "eval_samples_per_second": 49.227, "step": 1488 }, { "epoch": 94.0, "learning_rate": 0.00017666666666666666, "loss": 0.0161, "step": 1504 }, { "epoch": 94.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 60.272285184879166, "eval_classification_report": "{\"0\": {\"precision\": 0.5614035087719298, \"recall\": 0.8205128205128205, \"f1-score\": 0.6666666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.625, \"recall\": 0.3125, \"f1-score\": 0.4166666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.7272727272727273, \"f1-score\": 0.8421052631578948, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.4444444444444444, \"f1-score\": 0.5714285714285714, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.510783952889216, \"recall\": 0.4493565195488272, \"f1-score\": 0.46809234625024093, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6724690514164199, \"recall\": 0.6507936507936508, \"f1-score\": 0.6412117595576242, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 46.8092346250241, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 64.12117595576242, "eval_loss": 0.8240537643432617, "eval_runtime": 2.6938, "eval_samples_per_second": 46.774, "step": 1504 }, { "epoch": 95.0, "learning_rate": 0.000175, "loss": 0.0121, "step": 1520 }, { "epoch": 95.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 61.902237945410945, "eval_classification_report": "{\"0\": {\"precision\": 0.6956521739130435, \"recall\": 0.8205128205128205, \"f1-score\": 0.7529411764705882, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.49914107631498933, \"recall\": 0.4415143617066694, \"f1-score\": 0.45810054117699833, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6845695195074076, \"recall\": 0.6746031746031746, \"f1-score\": 0.6687826274330898, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 45.810054117699835, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 66.87826274330898, "eval_loss": 0.81731116771698, "eval_runtime": 2.5857, "eval_samples_per_second": 48.73, "step": 1520 }, { "epoch": 96.0, "learning_rate": 0.0001733333333333333, "loss": 0.0116, "step": 1536 }, { "epoch": 96.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 64.42274875491306, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5084415584415585, \"recall\": 0.4718491978107362, \"f1-score\": 0.4812339306561323, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7073644609358896, \"recall\": 0.6984126984126984, \"f1-score\": 0.6988506227149935, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 48.12339306561323, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.88506227149935, "eval_loss": 0.7898662686347961, "eval_runtime": 2.5691, "eval_samples_per_second": 49.044, "step": 1536 }, { "epoch": 97.0, "learning_rate": 0.00017166666666666665, "loss": 0.0117, "step": 1552 }, { "epoch": 97.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.91984866077706, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5083919814182972, \"recall\": 0.5047598768752615, \"f1-score\": 0.503809691452712, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7002507035401773, \"recall\": 0.6825396825396826, \"f1-score\": 0.6879048898990054, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 50.3809691452712, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.79048898990054, "eval_loss": 0.8058239817619324, "eval_runtime": 2.2179, "eval_samples_per_second": 56.81, "step": 1552 }, { "epoch": 98.0, "learning_rate": 0.00016999999999999999, "loss": 0.013, "step": 1568 }, { "epoch": 98.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.726423259173394, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.36363636363636365, \"recall\": 0.5, \"f1-score\": 0.4210526315789474, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4976974779606358, \"recall\": 0.45476339899416823, \"f1-score\": 0.46487963453550496, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6907582809838448, \"recall\": 0.6666666666666666, \"f1-score\": 0.6708439624980979, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.4879634535505, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.08439624980979, "eval_loss": 0.8545581102371216, "eval_runtime": 3.0096, "eval_samples_per_second": 41.867, "step": 1568 }, { "epoch": 99.0, "learning_rate": 0.00016833333333333332, "loss": 0.0157, "step": 1584 }, { "epoch": 99.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.48671502122342, "eval_classification_report": "{\"0\": {\"precision\": 0.6744186046511628, \"recall\": 0.7435897435897436, \"f1-score\": 0.7073170731707318, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5118568372593418, \"recall\": 0.4482956146417685, \"f1-score\": 0.47170819916900253, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6907305227072669, \"recall\": 0.6746031746031746, \"f1-score\": 0.6785540524735848, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 47.17081991690025, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.85540524735848, "eval_loss": 0.8449181318283081, "eval_runtime": 2.6131, "eval_samples_per_second": 48.219, "step": 1584 }, { "epoch": 100.0, "learning_rate": 0.00016666666666666666, "loss": 0.0099, "step": 1600 }, { "epoch": 100.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.99555570091284, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.42857142857142855, \"f1-score\": 0.42857142857142855, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5209147221342343, \"recall\": 0.4484024522486061, \"f1-score\": 0.47042124542124547, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7104108950798845, \"recall\": 0.6666666666666666, \"f1-score\": 0.676067649281935, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 47.04212454212455, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.6067649281935, "eval_loss": 0.8687433004379272, "eval_runtime": 2.5579, "eval_samples_per_second": 49.259, "step": 1600 }, { "epoch": 101.0, "learning_rate": 0.000165, "loss": 0.0086, "step": 1616 }, { "epoch": 101.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 59.44047563408465, "eval_classification_report": "{\"0\": {\"precision\": 0.6578947368421053, \"recall\": 0.6410256410256411, \"f1-score\": 0.6493506493506495, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.3684210526315789, \"recall\": 0.5, \"f1-score\": 0.4242424242424242, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5051045445782288, \"recall\": 0.437780915665531, \"f1-score\": 0.4605353710616869, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6745412412705646, \"recall\": 0.6349206349206349, \"f1-score\": 0.6472423844604295, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 46.05353710616869, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.72423844604295, "eval_loss": 0.8796701431274414, "eval_runtime": 2.6756, "eval_samples_per_second": 47.092, "step": 1616 }, { "epoch": 102.0, "learning_rate": 0.0001633333333333333, "loss": 0.0113, "step": 1632 }, { "epoch": 102.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.45561640029523, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.21428571428571427, \"f1-score\": 0.3157894736842105, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5069494607956148, \"recall\": 0.44858560243175627, \"f1-score\": 0.45911074016434295, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7011036582465154, \"recall\": 0.6666666666666666, \"f1-score\": 0.665780582514133, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 45.91107401643429, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.5780582514133, "eval_loss": 0.863918662071228, "eval_runtime": 2.3723, "eval_samples_per_second": 53.112, "step": 1632 }, { "epoch": 103.0, "learning_rate": 0.00016166666666666665, "loss": 0.0117, "step": 1648 }, { "epoch": 103.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.61999648820218, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5173053442284211, \"recall\": 0.5019280932742471, \"f1-score\": 0.5067370568039857, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7109192394906682, \"recall\": 0.6904761904761905, \"f1-score\": 0.69711042177172, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 50.67370568039857, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.711042177172, "eval_loss": 0.8474490642547607, "eval_runtime": 2.512, "eval_samples_per_second": 50.16, "step": 1648 }, { "epoch": 104.0, "learning_rate": 0.00015999999999999999, "loss": 0.0059, "step": 1664 }, { "epoch": 104.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 64.14997252104057, "eval_classification_report": "{\"0\": {\"precision\": 0.6956521739130435, \"recall\": 0.8205128205128205, \"f1-score\": 0.7529411764705882, \"support\": 39.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.4375, \"f1-score\": 0.5185185185185185, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5153011982443421, \"recall\": 0.4674606376529453, \"f1-score\": 0.4759117937752603, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.716323611975786, \"recall\": 0.6984126984126984, \"f1-score\": 0.6932617102409657, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 47.591179377526025, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.32617102409657, "eval_loss": 0.8587446808815002, "eval_runtime": 2.3793, "eval_samples_per_second": 52.957, "step": 1664 }, { "epoch": 105.0, "learning_rate": 0.00015833333333333332, "loss": 0.0093, "step": 1680 }, { "epoch": 105.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.17826183736541, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5714285714285714, \"f1-score\": 0.5333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5245421245421246, \"recall\": 0.46906437579514504, \"f1-score\": 0.48788139280603404, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7149659863945579, \"recall\": 0.6904761904761905, \"f1-score\": 0.6982966997362018, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 48.7881392806034, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.82966997362018, "eval_loss": 0.8434666395187378, "eval_runtime": 2.081, "eval_samples_per_second": 60.549, "step": 1680 }, { "epoch": 106.0, "learning_rate": 0.00015666666666666666, "loss": 0.0121, "step": 1696 }, { "epoch": 106.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 64.51232798716765, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.5714285714285714, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5251568606831765, \"recall\": 0.46002427060119366, \"f1-score\": 0.4822887922865929, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7176608548789, \"recall\": 0.6984126984126984, \"f1-score\": 0.7013789303747164, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 48.22887922865929, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 70.13789303747164, "eval_loss": 0.8303678631782532, "eval_runtime": 1.9939, "eval_samples_per_second": 63.193, "step": 1696 }, { "epoch": 107.0, "learning_rate": 0.000155, "loss": 0.0092, "step": 1712 }, { "epoch": 107.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.034260433298904, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.34782608695652173, \"recall\": 0.5, \"f1-score\": 0.41025641025641024, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4988222011286698, \"recall\": 0.4417785206246745, \"f1-score\": 0.4591715976331362, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6869093908330387, \"recall\": 0.6587301587301587, \"f1-score\": 0.6647385022385022, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 45.91715976331362, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.47385022385022, "eval_loss": 0.8424494862556458, "eval_runtime": 2.5924, "eval_samples_per_second": 48.604, "step": 1712 }, { "epoch": 108.0, "learning_rate": 0.0001533333333333333, "loss": 0.0049, "step": 1728 }, { "epoch": 108.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.0628883102851, "eval_classification_report": "{\"0\": {\"precision\": 0.6739130434782609, \"recall\": 0.7948717948717948, \"f1-score\": 0.7294117647058824, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.4375, \"f1-score\": 0.4666666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.49719090831130963, \"recall\": 0.4460438066207297, \"f1-score\": 0.46160867691558227, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6832489571620005, \"recall\": 0.6746031746031746, \"f1-score\": 0.6717005062894723, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.160867691558224, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.17005062894724, "eval_loss": 0.8266916275024414, "eval_runtime": 2.66, "eval_samples_per_second": 47.369, "step": 1728 }, { "epoch": 109.0, "learning_rate": 0.00015166666666666665, "loss": 0.0075, "step": 1744 }, { "epoch": 109.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 62.93007056253319, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.5454545454545454, \"recall\": 0.375, \"f1-score\": 0.4444444444444444, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.5714285714285714, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5016124900740285, \"recall\": 0.4598681233296618, \"f1-score\": 0.47174939793649934, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.689025789025789, \"recall\": 0.6825396825396826, \"f1-score\": 0.6803740594854631, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.17493979364993, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.03740594854631, "eval_loss": 0.8197355270385742, "eval_runtime": 2.2367, "eval_samples_per_second": 56.333, "step": 1744 }, { "epoch": 110.0, "learning_rate": 0.00015, "loss": 0.0044, "step": 1760 }, { "epoch": 110.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.08224121039248, "eval_classification_report": "{\"0\": {\"precision\": 0.6739130434782609, \"recall\": 0.7948717948717948, \"f1-score\": 0.7294117647058824, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5012014277064444, \"recall\": 0.44856212163904463, \"f1-score\": 0.4635227517580459, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6844665667129435, \"recall\": 0.6746031746031746, \"f1-score\": 0.6705605474513037, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.35227517580459, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.05605474513037, "eval_loss": 0.8375682234764099, "eval_runtime": 2.9116, "eval_samples_per_second": 43.276, "step": 1760 }, { "epoch": 111.0, "learning_rate": 0.00014833333333333332, "loss": 0.009, "step": 1776 }, { "epoch": 111.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.10261347056617, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.7058823529411765, \"recall\": 0.8, \"f1-score\": 0.7500000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.498541244970519, \"recall\": 0.45098181732797116, \"f1-score\": 0.462243497862227, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.690546389833931, \"recall\": 0.6746031746031746, \"f1-score\": 0.6726546917540706, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.2243497862227, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.26546917540705, "eval_loss": 0.8568500280380249, "eval_runtime": 2.9555, "eval_samples_per_second": 42.633, "step": 1776 }, { "epoch": 112.0, "learning_rate": 0.00014666666666666664, "loss": 0.0075, "step": 1792 }, { "epoch": 112.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.82397952778387, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.510085273804786, \"recall\": 0.44695251329866714, \"f1-score\": 0.46621244990810207, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6996871611418649, \"recall\": 0.6666666666666666, \"f1-score\": 0.6734133978699196, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.621244990810204, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.34133978699197, "eval_loss": 0.8699707388877869, "eval_runtime": 2.4989, "eval_samples_per_second": 50.423, "step": 1792 }, { "epoch": 113.0, "learning_rate": 0.000145, "loss": 0.007, "step": 1808 }, { "epoch": 113.0, "eval_accuracy": 71.42857142857143, "eval_average_metrics": 66.48488392966644, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.8205128205128205, \"f1-score\": 0.7356321839080459, \"support\": 39.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.4375, \"f1-score\": 0.5185185185185185, \"support\": 16.0}, \"2\": {\"precision\": 0.6153846153846154, \"recall\": 0.5714285714285714, \"f1-score\": 0.5925925925925927, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5343225150917459, \"recall\": 0.5070821272744349, \"f1-score\": 0.5170110897291426, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7272264772264773, \"recall\": 0.7142857142857143, \"f1-score\": 0.7138128388860865, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}}", "eval_f1_macro": 51.701108972914255, "eval_f1_micro": 71.42857142857143, "eval_f1_weighted": 71.38128388860865, "eval_loss": 0.8613536953926086, "eval_runtime": 2.6502, "eval_samples_per_second": 47.543, "step": 1808 }, { "epoch": 114.0, "learning_rate": 0.00014333333333333334, "loss": 0.0071, "step": 1824 }, { "epoch": 114.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.1635643594322, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5102954268995544, \"recall\": 0.45720892355507736, \"f1-score\": 0.4749035585992108, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6993811840501737, \"recall\": 0.6825396825396826, \"f1-score\": 0.686559650698712, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.49035585992108, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.6559650698712, "eval_loss": 0.857383131980896, "eval_runtime": 2.7595, "eval_samples_per_second": 45.661, "step": 1824 }, { "epoch": 115.0, "learning_rate": 0.00014166666666666665, "loss": 0.0065, "step": 1840 }, { "epoch": 115.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.07779873678491, "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.6923076923076923, \"f1-score\": 0.7012987012987013, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5145992453208457, \"recall\": 0.453264150379535, \"f1-score\": 0.4732936926485314, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6989267935530651, \"recall\": 0.6666666666666666, \"f1-score\": 0.6764849234895318, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 47.32936926485314, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.64849234895318, "eval_loss": 0.8765367865562439, "eval_runtime": 2.5652, "eval_samples_per_second": 49.12, "step": 1840 }, { "epoch": 116.0, "learning_rate": 0.00014, "loss": 0.0066, "step": 1856 }, { "epoch": 116.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.65743088214212, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5049364696175203, \"recall\": 0.49214482099097484, \"f1-score\": 0.49613369483576675, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6944442338751282, \"recall\": 0.6825396825396826, \"f1-score\": 0.6850841753705531, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.613369483576676, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.50841753705531, "eval_loss": 0.8605829477310181, "eval_runtime": 2.6029, "eval_samples_per_second": 48.408, "step": 1856 }, { "epoch": 117.0, "learning_rate": 0.00013833333333333333, "loss": 0.0071, "step": 1872 }, { "epoch": 117.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.41559832873551, "eval_classification_report": "{\"0\": {\"precision\": 0.5964912280701754, \"recall\": 0.8717948717948718, \"f1-score\": 0.7083333333333334, \"support\": 39.0}, \"1\": {\"precision\": 0.5384615384615384, \"recall\": 0.4375, \"f1-score\": 0.4827586206896552, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.875, \"recall\": 0.4666666666666667, \"f1-score\": 0.608695652173913, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.521333917993837, \"recall\": 0.47366426308734005, \"f1-score\": 0.4852148559419923, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6954105105420896, \"recall\": 0.6746031746031746, \"f1-score\": 0.6622027280010787, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 48.521485594199234, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 66.22027280010786, "eval_loss": 0.9345585107803345, "eval_runtime": 2.4339, "eval_samples_per_second": 51.769, "step": 1872 }, { "epoch": 118.0, "learning_rate": 0.00013666666666666666, "loss": 0.0084, "step": 1888 }, { "epoch": 118.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 63.261752519271326, "eval_classification_report": "{\"0\": {\"precision\": 0.7027027027027027, \"recall\": 0.6666666666666666, \"f1-score\": 0.6842105263157895, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5101635091513634, \"recall\": 0.49652985902985897, \"f1-score\": 0.5007390270548165, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6936637296912987, \"recall\": 0.6746031746031746, \"f1-score\": 0.6805247245096869, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 50.07390270548166, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 68.0524724509687, "eval_loss": 0.8943172693252563, "eval_runtime": 2.4665, "eval_samples_per_second": 51.084, "step": 1888 }, { "epoch": 119.0, "learning_rate": 0.000135, "loss": 0.0057, "step": 1904 }, { "epoch": 119.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 65.06129302682433, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.4666666666666667, \"recall\": 0.4375, \"f1-score\": 0.45161290322580644, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.5714285714285714, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5167874760898017, \"recall\": 0.5044194053809439, \"f1-score\": 0.5079330275791668, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7049216256857452, \"recall\": 0.6984126984126984, \"f1-score\": 0.6976932966684096, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 50.79330275791668, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.76932966684096, "eval_loss": 0.8890640139579773, "eval_runtime": 2.6794, "eval_samples_per_second": 47.026, "step": 1904 }, { "epoch": 120.0, "learning_rate": 0.0001333333333333333, "loss": 0.0068, "step": 1920 }, { "epoch": 120.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.80120890244195, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.4666666666666667, \"recall\": 0.5, \"f1-score\": 0.4827586206896552, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5185425685425685, \"recall\": 0.4387753272368657, \"f1-score\": 0.4664985055867943, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6979128014842301, \"recall\": 0.6666666666666666, \"f1-score\": 0.6722165171775506, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.64985055867943, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.22165171775507, "eval_loss": 0.9257850646972656, "eval_runtime": 1.9476, "eval_samples_per_second": 64.695, "step": 1920 }, { "epoch": 121.0, "learning_rate": 0.00013166666666666665, "loss": 0.0112, "step": 1936 }, { "epoch": 121.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.82085778794462, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.7692307692307693, \"f1-score\": 0.7407407407407408, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.7, \"recall\": 0.5, \"f1-score\": 0.5833333333333334, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5156928541543926, \"recall\": 0.46238643834797677, \"f1-score\": 0.47818791642321057, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7117461903176189, \"recall\": 0.6904761904761905, \"f1-score\": 0.6936940141421934, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 47.81879164232106, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.36940141421934, "eval_loss": 0.8593515753746033, "eval_runtime": 2.4035, "eval_samples_per_second": 52.423, "step": 1936 }, { "epoch": 122.0, "learning_rate": 0.00013, "loss": 0.0081, "step": 1952 }, { "epoch": 122.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 60.921720786569, "eval_classification_report": "{\"0\": {\"precision\": 0.62, \"recall\": 0.7948717948717948, \"f1-score\": 0.6966292134831461, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.375, \"f1-score\": 0.42857142857142855, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.6923076923076923, \"recall\": 0.6, \"f1-score\": 0.6428571428571429, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4904156100309946, \"recall\": 0.4699906930676161, \"f1-score\": 0.47319946245138433, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6576556776556777, \"recall\": 0.6587301587301587, \"f1-score\": 0.6462090515510582, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 47.31994624513843, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 64.62090515510582, "eval_loss": 0.8697892427444458, "eval_runtime": 2.7258, "eval_samples_per_second": 46.224, "step": 1952 }, { "epoch": 123.0, "learning_rate": 0.00012833333333333333, "loss": 0.0044, "step": 1968 }, { "epoch": 123.0, "eval_accuracy": 72.22222222222221, "eval_average_metrics": 67.54409066432659, "eval_classification_report": "{\"0\": {\"precision\": 0.7777777777777778, \"recall\": 0.717948717948718, \"f1-score\": 0.7466666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.47368421052631576, \"recall\": 0.6428571428571429, \"f1-score\": 0.5454545454545454, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.8571428571428571, \"recall\": 0.75, \"f1-score\": 0.7999999999999999, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.7222222222222222, \"recall\": 0.7222222222222222, \"f1-score\": 0.7222222222222222, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5356576846455389, \"recall\": 0.5295802488110181, \"f1-score\": 0.5302190126872522, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7384011004311756, \"recall\": 0.7222222222222222, \"f1-score\": 0.7271001694413671, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7222222222222222, \"recall\": 0.7222222222222222, \"f1-score\": 0.7222222222222222, \"support\": 126.0}}", "eval_f1_macro": 53.02190126872522, "eval_f1_micro": 72.22222222222221, "eval_f1_weighted": 72.71001694413671, "eval_loss": 0.8714141249656677, "eval_runtime": 2.4832, "eval_samples_per_second": 50.74, "step": 1968 }, { "epoch": 124.0, "learning_rate": 0.00012666666666666666, "loss": 0.0068, "step": 1984 }, { "epoch": 124.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 62.67582877275529, "eval_classification_report": "{\"0\": {\"precision\": 0.7317073170731707, \"recall\": 0.7692307692307693, \"f1-score\": 0.7499999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.21428571428571427, \"f1-score\": 0.3157894736842105, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5073840793352988, \"recall\": 0.4601733736349121, \"f1-score\": 0.46655562330271416, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7011973895249156, \"recall\": 0.6825396825396826, \"f1-score\": 0.6753981625281325, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 46.655562330271415, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.53981625281324, "eval_loss": 0.9019809365272522, "eval_runtime": 2.2169, "eval_samples_per_second": 56.837, "step": 1984 }, { "epoch": 125.0, "learning_rate": 0.000125, "loss": 0.0086, "step": 2000 }, { "epoch": 125.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.692964916693555, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6153846153846154, \"recall\": 0.8888888888888888, \"f1-score\": 0.7272727272727274, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5100356908049215, \"recall\": 0.4654389414004798, \"f1-score\": 0.47509567893456367, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7110573289144717, \"recall\": 0.6904761904761905, \"f1-score\": 0.6916705367807973, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 47.509567893456364, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.16705367807972, "eval_loss": 0.8956665396690369, "eval_runtime": 1.9509, "eval_samples_per_second": 64.586, "step": 2000 }, { "epoch": 126.0, "learning_rate": 0.0001233333333333333, "loss": 0.0055, "step": 2016 }, { "epoch": 126.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.044093111637636, "eval_classification_report": "{\"0\": {\"precision\": 0.6888888888888889, \"recall\": 0.7948717948717948, \"f1-score\": 0.738095238095238, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.21428571428571427, \"f1-score\": 0.3, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4969368795455752, \"recall\": 0.4365047345816576, \"f1-score\": 0.45073988787516645, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6780751914292287, \"recall\": 0.6666666666666666, \"f1-score\": 0.6576905032570057, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 45.07398878751665, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 65.76905032570058, "eval_loss": 0.9140748977661133, "eval_runtime": 1.9446, "eval_samples_per_second": 64.794, "step": 2016 }, { "epoch": 127.0, "learning_rate": 0.00012166666666666665, "loss": 0.0051, "step": 2032 }, { "epoch": 127.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.23525448506954, "eval_classification_report": "{\"0\": {\"precision\": 0.6808510638297872, \"recall\": 0.8205128205128205, \"f1-score\": 0.7441860465116279, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.2857142857142857, \"f1-score\": 0.38095238095238093, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5148167538084282, \"recall\": 0.4773049599972677, \"f1-score\": 0.48747746619886717, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6972993113372392, \"recall\": 0.6825396825396826, \"f1-score\": 0.6768533481245493, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 48.74774661988672, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.68533481245494, "eval_loss": 0.8974296450614929, "eval_runtime": 1.8416, "eval_samples_per_second": 68.418, "step": 2032 }, { "epoch": 128.0, "learning_rate": 0.00011999999999999999, "loss": 0.0073, "step": 2048 }, { "epoch": 128.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.57869253157777, "eval_classification_report": "{\"0\": {\"precision\": 0.6595744680851063, \"recall\": 0.7948717948717948, \"f1-score\": 0.7209302325581396, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.6363636363636364, \"recall\": 0.5, \"f1-score\": 0.56, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5159879127964234, \"recall\": 0.4798502779272009, \"f1-score\": 0.49482848299396254, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6943559077044387, \"recall\": 0.6825396825396826, \"f1-score\": 0.6832398531897834, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.48284829939625, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.32398531897834, "eval_loss": 0.8693870306015015, "eval_runtime": 2.2246, "eval_samples_per_second": 56.64, "step": 2048 }, { "epoch": 129.0, "learning_rate": 0.00011833333333333331, "loss": 0.0051, "step": 2064 }, { "epoch": 129.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.495659619845256, "eval_classification_report": "{\"0\": {\"precision\": 0.66, \"recall\": 0.8461538461538461, \"f1-score\": 0.7415730337078651, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5341330891330891, \"recall\": 0.47216501447270676, \"f1-score\": 0.4920953028025071, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7192139077853363, \"recall\": 0.6825396825396826, \"f1-score\": 0.6826517169119379, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.20953028025071, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.2651716911938, "eval_loss": 0.8972026705741882, "eval_runtime": 2.575, "eval_samples_per_second": 48.932, "step": 2064 }, { "epoch": 130.0, "learning_rate": 0.00011666666666666665, "loss": 0.0041, "step": 2080 }, { "epoch": 130.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.50763460594128, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.4666666666666667, \"recall\": 0.5, \"f1-score\": 0.4827586206896552, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5147657897657898, \"recall\": 0.4994097782559321, \"f1-score\": 0.5047713637258403, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7039164318926223, \"recall\": 0.6904761904761905, \"f1-score\": 0.6945816395594299, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 50.47713637258403, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.458163955943, "eval_loss": 0.8491485714912415, "eval_runtime": 2.4864, "eval_samples_per_second": 50.675, "step": 2080 }, { "epoch": 131.0, "learning_rate": 0.000115, "loss": 0.0056, "step": 2096 }, { "epoch": 131.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 65.71089996465935, "eval_classification_report": "{\"0\": {\"precision\": 0.7111111111111111, \"recall\": 0.8205128205128205, \"f1-score\": 0.7619047619047619, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.8333333333333334, \"f1-score\": 0.8333333333333334, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5297924297924298, \"recall\": 0.49737516756747524, \"f1-score\": 0.5080948733580313, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7262282690854118, \"recall\": 0.7063492063492064, \"f1-score\": 0.7076427125299305, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 50.80948733580313, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 70.76427125299305, "eval_loss": 0.9137545228004456, "eval_runtime": 2.5315, "eval_samples_per_second": 49.773, "step": 2096 }, { "epoch": 132.0, "learning_rate": 0.00011333333333333331, "loss": 0.0054, "step": 2112 }, { "epoch": 132.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.900997657206055, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.717948717948718, \"f1-score\": 0.691358024691358, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5167169431875315, \"recall\": 0.47361260534337457, \"f1-score\": 0.49036119304936504, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6902149748788404, \"recall\": 0.6587301587301587, \"f1-score\": 0.6682183957785596, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 49.036119304936506, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.82183957785595, "eval_loss": 0.8714478015899658, "eval_runtime": 2.8776, "eval_samples_per_second": 43.787, "step": 2112 }, { "epoch": 133.0, "learning_rate": 0.00011166666666666667, "loss": 0.0072, "step": 2128 }, { "epoch": 133.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.6564589327406, "eval_classification_report": "{\"0\": {\"precision\": 0.6444444444444445, \"recall\": 0.7435897435897436, \"f1-score\": 0.6904761904761906, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.5555555555555556, \"recall\": 0.35714285714285715, \"f1-score\": 0.43478260869565216, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5156288156288157, \"recall\": 0.4694036732498271, \"f1-score\": 0.4857064711846073, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6880322499370118, \"recall\": 0.6587301587301587, \"f1-score\": 0.6630915686646993, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 48.57064711846073, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.30915686646993, "eval_loss": 0.8890276551246643, "eval_runtime": 2.906, "eval_samples_per_second": 43.359, "step": 2128 }, { "epoch": 134.0, "learning_rate": 0.00010999999999999998, "loss": 0.0055, "step": 2144 }, { "epoch": 134.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.10422151485862, "eval_classification_report": "{\"0\": {\"precision\": 0.64, \"recall\": 0.8205128205128205, \"f1-score\": 0.7191011235955057, \"support\": 39.0}, \"1\": {\"precision\": 0.7, \"recall\": 0.4375, \"f1-score\": 0.5384615384615384, \"support\": 16.0}, \"2\": {\"precision\": 0.7, \"recall\": 0.5, \"f1-score\": 0.5833333333333334, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.515897435897436, \"recall\": 0.4879124081047158, \"f1-score\": 0.4960029886564026, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7056349206349206, \"recall\": 0.6904761904761905, \"f1-score\": 0.6872134909855616, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 49.600298865640255, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.72134909855616, "eval_loss": 0.8644758462905884, "eval_runtime": 2.7455, "eval_samples_per_second": 45.893, "step": 2144 }, { "epoch": 135.0, "learning_rate": 0.00010833333333333333, "loss": 0.0041, "step": 2160 }, { "epoch": 135.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.753650309439294, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5153987038602423, \"recall\": 0.4855208893670432, \"f1-score\": 0.49774595264791344, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6996060817489389, \"recall\": 0.6825396825396826, \"f1-score\": 0.6873206946502932, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.774595264791344, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.73206946502933, "eval_loss": 0.8717086911201477, "eval_runtime": 2.5962, "eval_samples_per_second": 48.532, "step": 2160 }, { "epoch": 136.0, "learning_rate": 0.00010666666666666667, "loss": 0.0043, "step": 2176 }, { "epoch": 136.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.77578491607396, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5017676767676768, \"recall\": 0.48028936875090716, \"f1-score\": 0.4874046094657284, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6854497354497355, \"recall\": 0.6746031746031746, \"f1-score\": 0.6744204379708804, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 48.74046094657284, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.44204379708803, "eval_loss": 0.8781262636184692, "eval_runtime": 3.0871, "eval_samples_per_second": 40.815, "step": 2176 }, { "epoch": 137.0, "learning_rate": 0.00010499999999999999, "loss": 0.003, "step": 2192 }, { "epoch": 137.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.232338866673565, "eval_classification_report": "{\"0\": {\"precision\": 0.6956521739130435, \"recall\": 0.8205128205128205, \"f1-score\": 0.7529411764705882, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4983446505185636, \"recall\": 0.47942644961875724, \"f1-score\": 0.48517158002749805, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6879680169535243, \"recall\": 0.6825396825396826, \"f1-score\": 0.6790426095600797, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 48.5171580027498, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.90426095600796, "eval_loss": 0.8743364214897156, "eval_runtime": 2.552, "eval_samples_per_second": 49.373, "step": 2192 }, { "epoch": 138.0, "learning_rate": 0.00010333333333333333, "loss": 0.0036, "step": 2208 }, { "epoch": 138.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.79966722961229, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5056082806082807, \"recall\": 0.48028936875090716, \"f1-score\": 0.4890310948003255, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6859376073661788, \"recall\": 0.6746031746031746, \"f1-score\": 0.6737492451778166, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 48.903109480032555, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.37492451778166, "eval_loss": 0.8886361122131348, "eval_runtime": 2.1217, "eval_samples_per_second": 59.387, "step": 2208 }, { "epoch": 139.0, "learning_rate": 0.00010166666666666667, "loss": 0.0035, "step": 2224 }, { "epoch": 139.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.18379953041124, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5024569110601499, \"recall\": 0.4754816764432149, \"f1-score\": 0.48603469180392256, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6789648947543684, \"recall\": 0.6666666666666666, \"f1-score\": 0.6679839560791941, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 48.60346918039225, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.79839560791942, "eval_loss": 0.8842400908470154, "eval_runtime": 2.5619, "eval_samples_per_second": 49.183, "step": 2224 }, { "epoch": 140.0, "learning_rate": 9.999999999999999e-05, "loss": 0.0033, "step": 2240 }, { "epoch": 140.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.630991351003594, "eval_classification_report": "{\"0\": {\"precision\": 0.6595744680851063, \"recall\": 0.7948717948717948, \"f1-score\": 0.7209302325581396, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5235525703610809, \"recall\": 0.4822617553386784, \"f1-score\": 0.49684332259607655, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7040509304946996, \"recall\": 0.6825396825396826, \"f1-score\": 0.683316966364702, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.68433225960766, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.3316966364702, "eval_loss": 0.9056944251060486, "eval_runtime": 2.2766, "eval_samples_per_second": 55.347, "step": 2240 }, { "epoch": 141.0, "learning_rate": 9.833333333333333e-05, "loss": 0.0038, "step": 2256 }, { "epoch": 141.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 65.2763631136647, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.5714285714285714, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5292333397596555, \"recall\": 0.4998829162290701, \"f1-score\": 0.5118794785461452, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7124935354258661, \"recall\": 0.6984126984126984, \"f1-score\": 0.702349649175046, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 51.18794785461452, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 70.23496491750461, "eval_loss": 0.8779476881027222, "eval_runtime": 2.3345, "eval_samples_per_second": 53.974, "step": 2256 }, { "epoch": 142.0, "learning_rate": 9.666666666666667e-05, "loss": 0.0048, "step": 2272 }, { "epoch": 142.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.65655316747905, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5625, \"f1-score\": 0.5294117647058824, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.6875, \"recall\": 0.7333333333333333, \"f1-score\": 0.7096774193548386, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5273962148962149, \"recall\": 0.49438841073456463, \"f1-score\": 0.5082491851625311, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7102938397581254, \"recall\": 0.6904761904761905, \"f1-score\": 0.6970605605842497, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 50.82491851625311, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.70605605842496, "eval_loss": 0.8779242038726807, "eval_runtime": 2.1115, "eval_samples_per_second": 59.674, "step": 2272 }, { "epoch": 143.0, "learning_rate": 9.499999999999999e-05, "loss": 0.0043, "step": 2288 }, { "epoch": 143.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.3136422003381, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7777777777777778, \"recall\": 0.4666666666666667, \"f1-score\": 0.5833333333333334, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5105898375129144, \"recall\": 0.47868328252943637, \"f1-score\": 0.4883602102900348, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6937670794813652, \"recall\": 0.6666666666666666, \"f1-score\": 0.6708521443901561, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 48.836021029003476, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.0852144390156, "eval_loss": 0.9122390151023865, "eval_runtime": 2.386, "eval_samples_per_second": 52.808, "step": 2288 }, { "epoch": 144.0, "learning_rate": 9.333333333333333e-05, "loss": 0.0049, "step": 2304 }, { "epoch": 144.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 64.168970288412, "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.8205128205128205, \"f1-score\": 0.7710843373493976, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.5714285714285714, \"recall\": 0.5714285714285714, \"f1-score\": 0.5714285714285714, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5071680456295842, \"recall\": 0.45996674265905035, \"f1-score\": 0.4733495309092576, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7087258420591754, \"recall\": 0.6984126984126984, \"f1-score\": 0.6965838838018259, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 47.33495309092576, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.65838838018259, "eval_loss": 0.8894078731536865, "eval_runtime": 2.57, "eval_samples_per_second": 49.028, "step": 2304 }, { "epoch": 145.0, "learning_rate": 9.166666666666667e-05, "loss": 0.0048, "step": 2320 }, { "epoch": 145.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.661087893710935, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5125208125208125, \"recall\": 0.44182783028936873, \"f1-score\": 0.46361743059697685, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6971311757026043, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694927518181272, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.36174305969769, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.94927518181272, "eval_loss": 0.894682765007019, "eval_runtime": 2.5248, "eval_samples_per_second": 49.906, "step": 2320 }, { "epoch": 146.0, "learning_rate": 8.999999999999999e-05, "loss": 0.0041, "step": 2336 }, { "epoch": 146.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 60.61998946240801, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.7692307692307693, \"f1-score\": 0.7407407407407408, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.6923076923076923, \"recall\": 0.6, \"f1-score\": 0.6428571428571429, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4861715207869054, \"recall\": 0.436653837615376, \"f1-score\": 0.4499191354454512, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6735276628133772, \"recall\": 0.6587301587301587, \"f1-score\": 0.6574201255905517, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 44.99191354454512, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 65.74201255905517, "eval_loss": 0.8871658444404602, "eval_runtime": 2.4354, "eval_samples_per_second": 51.738, "step": 2336 }, { "epoch": 147.0, "learning_rate": 8.833333333333333e-05, "loss": 0.0024, "step": 2352 }, { "epoch": 147.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.35981812866734, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5040683206724482, \"recall\": 0.450798667144821, \"f1-score\": 0.46801624301624306, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6893351454327065, \"recall\": 0.6746031746031746, \"f1-score\": 0.6771701329241012, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.80162430162431, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.71701329241012, "eval_loss": 0.8847377300262451, "eval_runtime": 2.9445, "eval_samples_per_second": 42.792, "step": 2352 }, { "epoch": 148.0, "learning_rate": 8.666666666666665e-05, "loss": 0.0049, "step": 2368 }, { "epoch": 148.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.64898286772102, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.5333333333333333, \"recall\": 0.5714285714285714, \"f1-score\": 0.5517241379310344, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5063007168270327, \"recall\": 0.4394621404236788, \"f1-score\": 0.4633040699353697, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6846745290354314, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693219114401379, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.33040699353697, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.93219114401379, "eval_loss": 0.8905553817749023, "eval_runtime": 2.8594, "eval_samples_per_second": 44.065, "step": 2368 }, { "epoch": 149.0, "learning_rate": 8.499999999999999e-05, "loss": 0.0056, "step": 2384 }, { "epoch": 149.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.61231229088372, "eval_classification_report": "{\"0\": {\"precision\": 0.7741935483870968, \"recall\": 0.6153846153846154, \"f1-score\": 0.6857142857142857, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.6428571428571429, \"f1-score\": 0.5142857142857143, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.517610677164027, \"recall\": 0.46143429220352294, \"f1-score\": 0.4744388944388944, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7175169428625651, \"recall\": 0.6587301587301587, \"f1-score\": 0.6725932797361368, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 47.44388944388944, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 67.25932797361368, "eval_loss": 0.9346351027488708, "eval_runtime": 2.8168, "eval_samples_per_second": 44.732, "step": 2384 }, { "epoch": 150.0, "learning_rate": 8.333333333333333e-05, "loss": 0.005, "step": 2400 }, { "epoch": 150.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.18838399977178, "eval_classification_report": "{\"0\": {\"precision\": 0.6181818181818182, \"recall\": 0.8717948717948718, \"f1-score\": 0.723404255319149, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.375, \"f1-score\": 0.4615384615384615, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5154682923913693, \"recall\": 0.41781871974179663, \"f1-score\": 0.4511819997908378, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.694028194028194, \"recall\": 0.6666666666666666, \"f1-score\": 0.6630200268667003, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 45.118199979083776, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.30200268667002, "eval_loss": 0.9076501131057739, "eval_runtime": 2.4486, "eval_samples_per_second": 51.459, "step": 2400 }, { "epoch": 151.0, "learning_rate": 8.166666666666665e-05, "loss": 0.0053, "step": 2416 }, { "epoch": 151.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.93713968387995, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.509128590707538, \"recall\": 0.4529318971626664, \"f1-score\": 0.47131973068015703, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6903969580034743, \"recall\": 0.6666666666666666, \"f1-score\": 0.6728325233417077, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 47.131973068015704, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.28325233417077, "eval_loss": 0.8874291777610779, "eval_runtime": 2.5285, "eval_samples_per_second": 49.831, "step": 2416 }, { "epoch": 152.0, "learning_rate": 7.999999999999999e-05, "loss": 0.0033, "step": 2432 }, { "epoch": 152.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.81548229784762, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5149948342256034, \"recall\": 0.4449836488298026, \"f1-score\": 0.46691297797323733, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7003706610849468, \"recall\": 0.6666666666666666, \"f1-score\": 0.6723729806073345, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.691297797323735, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.23729806073345, "eval_loss": 0.912856936454773, "eval_runtime": 2.6176, "eval_samples_per_second": 48.136, "step": 2432 }, { "epoch": 153.0, "learning_rate": 7.833333333333333e-05, "loss": 0.0051, "step": 2448 }, { "epoch": 153.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.347233792467904, "eval_classification_report": "{\"0\": {\"precision\": 0.6730769230769231, \"recall\": 0.8974358974358975, \"f1-score\": 0.7692307692307692, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.5333333333333333, \"f1-score\": 0.6956521739130436, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5251782068583688, \"recall\": 0.4383350623735239, \"f1-score\": 0.465888431523883, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7206001113895851, \"recall\": 0.6904761904761905, \"f1-score\": 0.6870485392224522, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 46.5888431523883, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.70485392224522, "eval_loss": 0.9210941791534424, "eval_runtime": 2.3532, "eval_samples_per_second": 53.544, "step": 2448 }, { "epoch": 154.0, "learning_rate": 7.666666666666666e-05, "loss": 0.0029, "step": 2464 }, { "epoch": 154.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.01969054116679, "eval_classification_report": "{\"0\": {\"precision\": 0.6875, \"recall\": 0.8461538461538461, \"f1-score\": 0.7586206896551724, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.5333333333333333, \"f1-score\": 0.6956521739130436, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5298636192866962, \"recall\": 0.439884794692487, \"f1-score\": 0.4695952998411676, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.72164578146721, \"recall\": 0.6825396825396826, \"f1-score\": 0.686112956726139, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 46.95952998411676, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.6112956726139, "eval_loss": 0.9171773195266724, "eval_runtime": 2.4116, "eval_samples_per_second": 52.248, "step": 2464 }, { "epoch": 155.0, "learning_rate": 7.5e-05, "loss": 0.0023, "step": 2480 }, { "epoch": 155.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 59.9559737603128, "eval_classification_report": "{\"0\": {\"precision\": 0.6585365853658537, \"recall\": 0.6923076923076923, \"f1-score\": 0.675, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5069627335666572, \"recall\": 0.43317868029406487, \"f1-score\": 0.4593070956193129, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6781726093288736, \"recall\": 0.6428571428571429, \"f1-score\": 0.6532175690789136, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 45.93070956193129, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.32175690789136, "eval_loss": 0.9319469332695007, "eval_runtime": 2.2967, "eval_samples_per_second": 54.862, "step": 2480 }, { "epoch": 156.0, "learning_rate": 7.333333333333332e-05, "loss": 0.0029, "step": 2496 }, { "epoch": 156.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.05809373442755, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.4666666666666667, \"recall\": 0.5, \"f1-score\": 0.4827586206896552, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5153872697350959, \"recall\": 0.45010833183910104, \"f1-score\": 0.4730090336677988, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6972895921653686, \"recall\": 0.6666666666666666, \"f1-score\": 0.6759813823759699, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 47.30090336677988, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.598138237597, "eval_loss": 0.911668062210083, "eval_runtime": 2.3333, "eval_samples_per_second": 54.001, "step": 2496 }, { "epoch": 157.0, "learning_rate": 7.166666666666667e-05, "loss": 0.0027, "step": 2512 }, { "epoch": 157.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.61364527330913, "eval_classification_report": "{\"0\": {\"precision\": 0.6739130434782609, \"recall\": 0.7948717948717948, \"f1-score\": 0.7294117647058824, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5179566810001592, \"recall\": 0.4825822681591912, \"f1-score\": 0.4958505370270076, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.698973840744027, \"recall\": 0.6825396825396826, \"f1-score\": 0.6836159088259929, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.58505370270076, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.36159088259929, "eval_loss": 0.9034130573272705, "eval_runtime": 2.9385, "eval_samples_per_second": 42.879, "step": 2512 }, { "epoch": 158.0, "learning_rate": 7e-05, "loss": 0.0034, "step": 2528 }, { "epoch": 158.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.19284509147545, "eval_classification_report": "{\"0\": {\"precision\": 0.6530612244897959, \"recall\": 0.8205128205128205, \"f1-score\": 0.7272727272727272, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.6666666666666666, \"recall\": 0.42857142857142855, \"f1-score\": 0.5217391304347826, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5252271537985824, \"recall\": 0.4842341419264496, \"f1-score\": 0.4987264686261342, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7062917807815766, \"recall\": 0.6904761904761905, \"f1-score\": 0.6880349540805026, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 49.872646862613415, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.80349540805027, "eval_loss": 0.9296913146972656, "eval_runtime": 2.7867, "eval_samples_per_second": 45.215, "step": 2528 }, { "epoch": 159.0, "learning_rate": 6.833333333333333e-05, "loss": 0.0025, "step": 2544 }, { "epoch": 159.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.90621008478152, "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.6923076923076923, \"f1-score\": 0.7012987012987013, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5332425615320352, \"recall\": 0.5054009025162872, \"f1-score\": 0.5160878160878161, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7155502844412619, \"recall\": 0.6904761904761905, \"f1-score\": 0.6992082063510635, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 51.608781608781605, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.92082063510635, "eval_loss": 0.9076071381568909, "eval_runtime": 2.6135, "eval_samples_per_second": 48.211, "step": 2544 }, { "epoch": 160.0, "learning_rate": 6.666666666666666e-05, "loss": 0.0023, "step": 2560 }, { "epoch": 160.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 64.12823281665646, "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.6923076923076923, \"f1-score\": 0.7012987012987013, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.6666666666666666, \"f1-score\": 0.689655172413793, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5226198509093246, \"recall\": 0.500272697388082, \"f1-score\": 0.50906495389254, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7057241317579664, \"recall\": 0.6825396825396826, \"f1-score\": 0.6909849936943532, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 50.906495389254005, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 69.09849936943532, "eval_loss": 0.9092089533805847, "eval_runtime": 2.2066, "eval_samples_per_second": 57.102, "step": 2560 }, { "epoch": 161.0, "learning_rate": 6.5e-05, "loss": 0.0037, "step": 2576 }, { "epoch": 161.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.62846998906907, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6363636363636364, \"recall\": 0.5, \"f1-score\": 0.56, \"support\": 14.0}, \"3\": {\"precision\": 0.6875, \"recall\": 0.7333333333333333, \"f1-score\": 0.7096774193548386, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5266517696395745, \"recall\": 0.4988262805570498, \"f1-score\": 0.5095040056330379, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7069805299552686, \"recall\": 0.6904761904761905, \"f1-score\": 0.6946824129773439, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 50.95040056330379, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.4682412977344, "eval_loss": 0.9225128293037415, "eval_runtime": 1.9794, "eval_samples_per_second": 63.657, "step": 2576 }, { "epoch": 162.0, "learning_rate": 6.333333333333333e-05, "loss": 0.0021, "step": 2592 }, { "epoch": 162.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.66196634053777, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.6923076923076923, \"recall\": 0.6, \"f1-score\": 0.6428571428571429, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5154644500798347, \"recall\": 0.4870201379816764, \"f1-score\": 0.4982239982239982, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6936420722135008, \"recall\": 0.6825396825396826, \"f1-score\": 0.6831752903181474, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 49.822399822399824, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.31752903181474, "eval_loss": 0.9231581091880798, "eval_runtime": 2.6318, "eval_samples_per_second": 47.876, "step": 2592 }, { "epoch": 163.0, "learning_rate": 6.166666666666666e-05, "loss": 0.0017, "step": 2608 }, { "epoch": 163.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.65049716585796, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5189289369167418, \"recall\": 0.4834416651724344, \"f1-score\": 0.49723949147621455, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6952617262721793, \"recall\": 0.6666666666666666, \"f1-score\": 0.6754470618247709, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 49.723949147621454, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.54470618247709, "eval_loss": 0.9135796427726746, "eval_runtime": 2.8865, "eval_samples_per_second": 43.651, "step": 2608 }, { "epoch": 164.0, "learning_rate": 5.9999999999999995e-05, "loss": 0.0051, "step": 2624 }, { "epoch": 164.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.18495408840526, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.47058823529411764, \"recall\": 0.5, \"f1-score\": 0.48484848484848486, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7142857142857143, \"recall\": 0.8333333333333334, \"f1-score\": 0.7692307692307692, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5092376843402835, \"recall\": 0.4909613890383121, \"f1-score\": 0.49643735284497603, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7002492469856159, \"recall\": 0.6904761904761905, \"f1-score\": 0.6900084297388533, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 49.6437352844976, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.00084297388534, "eval_loss": 0.9109971523284912, "eval_runtime": 2.687, "eval_samples_per_second": 46.893, "step": 2624 }, { "epoch": 165.0, "learning_rate": 5.8333333333333326e-05, "loss": 0.0019, "step": 2640 }, { "epoch": 165.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.769060950348354, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5280131143193335, \"recall\": 0.4834416651724344, \"f1-score\": 0.4990919944649328, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7093836574337524, \"recall\": 0.6666666666666666, \"f1-score\": 0.6783371102156681, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 49.90919944649328, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.83371102156681, "eval_loss": 0.9539621472358704, "eval_runtime": 2.686, "eval_samples_per_second": 46.91, "step": 2640 }, { "epoch": 166.0, "learning_rate": 5.666666666666666e-05, "loss": 0.0038, "step": 2656 }, { "epoch": 166.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.65049716585796, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5189289369167418, \"recall\": 0.4834416651724344, \"f1-score\": 0.49723949147621455, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6952617262721793, \"recall\": 0.6666666666666666, \"f1-score\": 0.6754470618247709, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 49.723949147621454, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.54470618247709, "eval_loss": 0.8957458138465881, "eval_runtime": 2.448, "eval_samples_per_second": 51.47, "step": 2656 }, { "epoch": 167.0, "learning_rate": 5.499999999999999e-05, "loss": 0.002, "step": 2672 }, { "epoch": 167.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.28043834070627, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.47058823529411764, \"recall\": 0.5714285714285714, \"f1-score\": 0.5161290322580646, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5164938003173297, \"recall\": 0.4609940273401812, \"f1-score\": 0.47824661648828504, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7066037020868954, \"recall\": 0.6825396825396826, \"f1-score\": 0.6878915520606006, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.8246616488285, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.78915520606006, "eval_loss": 0.8909817337989807, "eval_runtime": 1.9602, "eval_samples_per_second": 64.278, "step": 2672 }, { "epoch": 168.0, "learning_rate": 5.333333333333333e-05, "loss": 0.0028, "step": 2688 }, { "epoch": 168.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.93214122818745, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.4444444444444444, \"recall\": 0.5714285714285714, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5104617604617604, \"recall\": 0.4504746322054014, \"f1-score\": 0.4702002024351228, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6940126892507845, \"recall\": 0.6666666666666666, \"f1-score\": 0.6737521133590421, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 47.02002024351228, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.37521133590421, "eval_loss": 0.90548175573349, "eval_runtime": 2.0284, "eval_samples_per_second": 62.117, "step": 2688 }, { "epoch": 169.0, "learning_rate": 5.1666666666666664e-05, "loss": 0.0022, "step": 2704 }, { "epoch": 169.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.195168093158266, "eval_classification_report": "{\"0\": {\"precision\": 0.6888888888888889, \"recall\": 0.7948717948717948, \"f1-score\": 0.738095238095238, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5028166278166278, \"recall\": 0.44540278097970404, \"f1-score\": 0.4644087154411042, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6873977873977875, \"recall\": 0.6746031746031746, \"f1-score\": 0.6741916590788771, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.440871544110415, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.41916590788772, "eval_loss": 0.9102009534835815, "eval_runtime": 2.5869, "eval_samples_per_second": 48.706, "step": 2704 }, { "epoch": 170.0, "learning_rate": 4.9999999999999996e-05, "loss": 0.0029, "step": 2720 }, { "epoch": 170.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.32465680926819, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5065684315684316, \"recall\": 0.448558599520138, \"f1-score\": 0.46768293589790105, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6912543805400948, \"recall\": 0.6746031746031746, \"f1-score\": 0.6760969872664772, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.768293589790105, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.60969872664772, "eval_loss": 0.9073759317398071, "eval_runtime": 2.295, "eval_samples_per_second": 54.903, "step": 2720 }, { "epoch": 171.0, "learning_rate": 4.8333333333333334e-05, "loss": 0.0037, "step": 2736 }, { "epoch": 171.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.827926968342105, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.504303054804727, \"recall\": 0.45352713525790445, \"f1-score\": 0.4679963910733142, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6914500613258378, \"recall\": 0.6666666666666666, \"f1-score\": 0.6717873543270368, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.79963910733142, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.17873543270369, "eval_loss": 0.9183236956596375, "eval_runtime": 2.2356, "eval_samples_per_second": 56.36, "step": 2736 }, { "epoch": 172.0, "learning_rate": 4.6666666666666665e-05, "loss": 0.0023, "step": 2752 }, { "epoch": 172.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.07370809039105, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5160016092037559, \"recall\": 0.4508972864742095, \"f1-score\": 0.47104807425731693, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.711707039115677, \"recall\": 0.6825396825396826, \"f1-score\": 0.6868208842789604, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.10480742573169, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.68208842789603, "eval_loss": 0.930382490158081, "eval_runtime": 2.8388, "eval_samples_per_second": 44.386, "step": 2752 }, { "epoch": 173.0, "learning_rate": 4.4999999999999996e-05, "loss": 0.0026, "step": 2768 }, { "epoch": 173.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 63.954576027557394, "eval_classification_report": "{\"0\": {\"precision\": 0.7111111111111111, \"recall\": 0.8205128205128205, \"f1-score\": 0.7619047619047619, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.5333333333333333, \"f1-score\": 0.6956521739130436, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5360958485958486, \"recall\": 0.4528696730619807, \"f1-score\": 0.4800002321741452, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7319822373393803, \"recall\": 0.6904761904761905, \"f1-score\": 0.6972304279757695, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 48.00002321741452, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.72304279757695, "eval_loss": 0.9368104338645935, "eval_runtime": 3.0683, "eval_samples_per_second": 41.066, "step": 2768 }, { "epoch": 174.0, "learning_rate": 4.333333333333333e-05, "loss": 0.0017, "step": 2784 }, { "epoch": 174.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.27162900958082, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5270437895437895, \"recall\": 0.4508972864742095, \"f1-score\": 0.47662313083999835, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.71672249707964, \"recall\": 0.6825396825396826, \"f1-score\": 0.6891626644638693, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.662313083999834, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.91626644638693, "eval_loss": 0.9564353823661804, "eval_runtime": 3.0326, "eval_samples_per_second": 41.549, "step": 2784 }, { "epoch": 175.0, "learning_rate": 4.1666666666666665e-05, "loss": 0.0023, "step": 2800 }, { "epoch": 175.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.21679648764303, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5234848484848484, \"recall\": 0.4508972864742095, \"f1-score\": 0.47499731474049806, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7155242905242906, \"recall\": 0.6825396825396826, \"f1-score\": 0.6885951796858581, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.4997314740498, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.85951796858582, "eval_loss": 0.9524317383766174, "eval_runtime": 2.7208, "eval_samples_per_second": 46.31, "step": 2800 }, { "epoch": 176.0, "learning_rate": 3.9999999999999996e-05, "loss": 0.0019, "step": 2816 }, { "epoch": 176.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.936337067255295, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5271562739585995, \"recall\": 0.4873864383479768, \"f1-score\": 0.5025567974491933, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7109581817223014, \"recall\": 0.6825396825396826, \"f1-score\": 0.6898173201616531, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 50.255679744919334, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.98173201616531, "eval_loss": 0.9354134202003479, "eval_runtime": 3.0134, "eval_samples_per_second": 41.813, "step": 2816 }, { "epoch": 177.0, "learning_rate": 3.833333333333333e-05, "loss": 0.0029, "step": 2832 }, { "epoch": 177.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 62.64499351858861, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5184478004061935, \"recall\": 0.4834416651724344, \"f1-score\": 0.4970663001315461, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6948759659074274, \"recall\": 0.6666666666666666, \"f1-score\": 0.6754001072786652, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 49.706630013154616, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.54001072786652, "eval_loss": 0.9240885972976685, "eval_runtime": 3.3615, "eval_samples_per_second": 37.484, "step": 2832 }, { "epoch": 178.0, "learning_rate": 3.666666666666666e-05, "loss": 0.0037, "step": 2848 }, { "epoch": 178.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 64.2943747453015, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5134245758739685, \"recall\": 0.489358824935748, \"f1-score\": 0.49863586009254657, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7025652141880212, \"recall\": 0.6904761904761905, \"f1-score\": 0.692186748767132, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 49.863586009254654, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.21867487671321, "eval_loss": 0.9319743514060974, "eval_runtime": 2.9834, "eval_samples_per_second": 42.234, "step": 2848 }, { "epoch": 179.0, "learning_rate": 3.5e-05, "loss": 0.0025, "step": 2864 }, { "epoch": 179.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 63.21280779761305, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5174492174492175, \"recall\": 0.4854140517602056, \"f1-score\": 0.49783303373642346, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6988739435168007, \"recall\": 0.6746031746031746, \"f1-score\": 0.681472928961749, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 49.78330337364235, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 68.1472928961749, "eval_loss": 0.9587529897689819, "eval_runtime": 2.4037, "eval_samples_per_second": 52.419, "step": 2864 }, { "epoch": 180.0, "learning_rate": 3.333333333333333e-05, "loss": 0.0019, "step": 2880 }, { "epoch": 180.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 63.04797164618996, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.5833333333333334, \"recall\": 0.5, \"f1-score\": 0.5384615384615384, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5086885336885337, \"recall\": 0.4854140517602056, \"f1-score\": 0.493975553860844, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6924585996014568, \"recall\": 0.6746031746031746, \"f1-score\": 0.6787369627804047, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 49.3975553860844, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.87369627804047, "eval_loss": 0.9404768347740173, "eval_runtime": 1.9766, "eval_samples_per_second": 63.746, "step": 2880 }, { "epoch": 181.0, "learning_rate": 3.1666666666666666e-05, "loss": 0.0017, "step": 2896 }, { "epoch": 181.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.95413590668957, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5020479051904944, \"recall\": 0.4854140517602056, \"f1-score\": 0.4909658769982657, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6896036599869352, \"recall\": 0.6746031746031746, \"f1-score\": 0.6779932100629678, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 49.09658769982657, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.79932100629678, "eval_loss": 0.9260015487670898, "eval_runtime": 2.0016, "eval_samples_per_second": 62.95, "step": 2896 }, { "epoch": 182.0, "learning_rate": 2.9999999999999997e-05, "loss": 0.003, "step": 2912 }, { "epoch": 182.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.14444245519647, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.6363636363636364, \"recall\": 0.7777777777777778, \"f1-score\": 0.7000000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.4991258741258741, \"recall\": 0.44540278097970404, \"f1-score\": 0.4622587622448605, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6876984126984127, \"recall\": 0.6746031746031746, \"f1-score\": 0.6743125867566486, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.22587622448605, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.43125867566486, "eval_loss": 0.9238971471786499, "eval_runtime": 2.3067, "eval_samples_per_second": 54.624, "step": 2912 }, { "epoch": 183.0, "learning_rate": 2.833333333333333e-05, "loss": 0.0023, "step": 2928 }, { "epoch": 183.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.08664226684554, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5384615384615384, \"recall\": 0.5, \"f1-score\": 0.5185185185185186, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.515121417044494, \"recall\": 0.4508972864742095, \"f1-score\": 0.4722064266864521, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7061339454196597, \"recall\": 0.6825396825396826, \"f1-score\": 0.6861798989080042, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.220642668645205, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.61798989080043, "eval_loss": 0.9319254159927368, "eval_runtime": 2.2809, "eval_samples_per_second": 55.242, "step": 2928 }, { "epoch": 184.0, "learning_rate": 2.6666666666666667e-05, "loss": 0.0024, "step": 2944 }, { "epoch": 184.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 63.20126337552526, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5205004298027553, \"recall\": 0.45373259219413065, \"f1-score\": 0.4758754125634742, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7087009151793205, \"recall\": 0.6825396825396826, \"f1-score\": 0.6870957573781707, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 47.58754125634742, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.70957573781708, "eval_loss": 0.9381272792816162, "eval_runtime": 2.7429, "eval_samples_per_second": 45.937, "step": 2944 }, { "epoch": 185.0, "learning_rate": 2.4999999999999998e-05, "loss": 0.002, "step": 2960 }, { "epoch": 185.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.596527639210564, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.5333333333333333, \"f1-score\": 0.64, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5196776414799671, \"recall\": 0.44892489988643836, \"f1-score\": 0.4733964153476349, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7040137372778569, \"recall\": 0.6746031746031746, \"f1-score\": 0.6812583410144385, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 47.33964153476349, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 68.12583410144384, "eval_loss": 0.9524739384651184, "eval_runtime": 2.528, "eval_samples_per_second": 49.842, "step": 2960 }, { "epoch": 186.0, "learning_rate": 2.3333333333333332e-05, "loss": 0.0029, "step": 2976 }, { "epoch": 186.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.30518409054388, "eval_classification_report": "{\"0\": {\"precision\": 0.6829268292682927, \"recall\": 0.717948717948718, \"f1-score\": 0.7000000000000001, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.4117647058823529, \"recall\": 0.5, \"f1-score\": 0.45161290322580644, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5109691679275611, \"recall\": 0.44498012671089593, \"f1-score\": 0.4679059180299875, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.687931521462983, \"recall\": 0.6587301587301587, \"f1-score\": 0.6668411281314507, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 46.79059180299875, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.68411281314506, "eval_loss": 0.9525312781333923, "eval_runtime": 2.6695, "eval_samples_per_second": 47.199, "step": 2976 }, { "epoch": 187.0, "learning_rate": 2.1666666666666664e-05, "loss": 0.0017, "step": 2992 }, { "epoch": 187.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.07399074028033, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.6666666666666666, \"f1-score\": 0.7058823529411765, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5103549228549228, \"recall\": 0.43396763492917334, \"f1-score\": 0.4613428803474052, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.68543685150828, \"recall\": 0.6587301587301587, \"f1-score\": 0.6641564318034906, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 46.13428803474052, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.41564318034906, "eval_loss": 0.9399377703666687, "eval_runtime": 2.2148, "eval_samples_per_second": 56.891, "step": 2992 }, { "epoch": 188.0, "learning_rate": 1.9999999999999998e-05, "loss": 0.0012, "step": 3008 }, { "epoch": 188.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.74998404070718, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.4666666666666667, \"recall\": 0.5, \"f1-score\": 0.4827586206896552, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.509032634032634, \"recall\": 0.44251464347618186, \"f1-score\": 0.4655680006683491, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6896825396825397, \"recall\": 0.6666666666666666, \"f1-score\": 0.671098027626605, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.55680006683491, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.1098027626605, "eval_loss": 0.9361627697944641, "eval_runtime": 2.4742, "eval_samples_per_second": 50.925, "step": 3008 }, { "epoch": 189.0, "learning_rate": 1.833333333333333e-05, "loss": 0.0044, "step": 3024 }, { "epoch": 189.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 61.015289909520675, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.42857142857142855, \"f1-score\": 0.42857142857142855, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5049367299367299, \"recall\": 0.4370201379816764, \"f1-score\": 0.4607377665069973, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6807599807599808, \"recall\": 0.6587301587301587, \"f1-score\": 0.6624135124135124, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 46.073776650699735, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.24135124135124, "eval_loss": 0.9376469254493713, "eval_runtime": 2.6227, "eval_samples_per_second": 48.042, "step": 3024 }, { "epoch": 190.0, "learning_rate": 1.6666666666666664e-05, "loss": 0.0016, "step": 3040 }, { "epoch": 190.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.67173982393361, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5048201798201798, \"recall\": 0.4434303943919329, \"f1-score\": 0.46407628613740515, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6861678004535148, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694599734866062, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.40762861374051, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.94599734866063, "eval_loss": 0.9379540085792542, "eval_runtime": 2.5316, "eval_samples_per_second": 49.772, "step": 3040 }, { "epoch": 191.0, "learning_rate": 1.4999999999999999e-05, "loss": 0.0016, "step": 3056 }, { "epoch": 191.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.2843380806799, "eval_classification_report": "{\"0\": {\"precision\": 0.6888888888888889, \"recall\": 0.7948717948717948, \"f1-score\": 0.738095238095238, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.507012432012432, \"recall\": 0.44540278097970404, \"f1-score\": 0.46628530039461213, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6910774410774412, \"recall\": 0.6746031746031746, \"f1-score\": 0.6758818736262344, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.62853003946121, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.58818736262344, "eval_loss": 0.9368726015090942, "eval_runtime": 2.802, "eval_samples_per_second": 44.967, "step": 3056 }, { "epoch": 192.0, "learning_rate": 1.3333333333333333e-05, "loss": 0.0016, "step": 3072 }, { "epoch": 192.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.67173982393361, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5048201798201798, \"recall\": 0.4434303943919329, \"f1-score\": 0.46407628613740515, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6861678004535148, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694599734866062, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.40762861374051, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.94599734866063, "eval_loss": 0.942326009273529, "eval_runtime": 2.4997, "eval_samples_per_second": 50.405, "step": 3072 }, { "epoch": 193.0, "learning_rate": 1.1666666666666666e-05, "loss": 0.0034, "step": 3088 }, { "epoch": 193.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.58256983641198, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5454545454545454, \"recall\": 0.42857142857142855, \"f1-score\": 0.4799999999999999, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5006243756243756, \"recall\": 0.4434303943919329, \"f1-score\": 0.4621997011838971, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.682488146773861, \"recall\": 0.6666666666666666, \"f1-score\": 0.6677697589392488, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.21997011838971, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.77697589392488, "eval_loss": 0.9360641837120056, "eval_runtime": 2.6666, "eval_samples_per_second": 47.251, "step": 3088 }, { "epoch": 194.0, "learning_rate": 9.999999999999999e-06, "loss": 0.0023, "step": 3104 }, { "epoch": 194.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.6113250230619, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5033216783216783, \"recall\": 0.4434303943919329, \"f1-score\": 0.46275337226388397, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6860750360750361, \"recall\": 0.6666666666666666, \"f1-score\": 0.6683662953252589, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.275337226388395, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.83662953252589, "eval_loss": 0.9350297451019287, "eval_runtime": 2.6716, "eval_samples_per_second": 47.162, "step": 3104 }, { "epoch": 195.0, "learning_rate": 8.333333333333332e-06, "loss": 0.003, "step": 3120 }, { "epoch": 195.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.67173982393361, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5048201798201798, \"recall\": 0.4434303943919329, \"f1-score\": 0.46407628613740515, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6861678004535148, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694599734866062, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.40762861374051, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.94599734866063, "eval_loss": 0.9338100552558899, "eval_runtime": 2.8851, "eval_samples_per_second": 43.673, "step": 3120 }, { "epoch": 196.0, "learning_rate": 6.666666666666667e-06, "loss": 0.0034, "step": 3136 }, { "epoch": 196.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.67173982393361, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5048201798201798, \"recall\": 0.4434303943919329, \"f1-score\": 0.46407628613740515, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6861678004535148, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694599734866062, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.40762861374051, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.94599734866063, "eval_loss": 0.9328243136405945, "eval_runtime": 2.6825, "eval_samples_per_second": 46.972, "step": 3136 }, { "epoch": 197.0, "learning_rate": 4.9999999999999996e-06, "loss": 0.0033, "step": 3152 }, { "epoch": 197.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.6113250230619, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5033216783216783, \"recall\": 0.4434303943919329, \"f1-score\": 0.46275337226388397, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6860750360750361, \"recall\": 0.6666666666666666, \"f1-score\": 0.6683662953252589, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.275337226388395, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.83662953252589, "eval_loss": 0.9354397654533386, "eval_runtime": 2.8359, "eval_samples_per_second": 44.43, "step": 3152 }, { "epoch": 198.0, "learning_rate": 3.3333333333333333e-06, "loss": 0.0018, "step": 3168 }, { "epoch": 198.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.6113250230619, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5033216783216783, \"recall\": 0.4434303943919329, \"f1-score\": 0.46275337226388397, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6860750360750361, \"recall\": 0.6666666666666666, \"f1-score\": 0.6683662953252589, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.275337226388395, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.83662953252589, "eval_loss": 0.9372482299804688, "eval_runtime": 2.8102, "eval_samples_per_second": 44.837, "step": 3168 }, { "epoch": 199.0, "learning_rate": 1.6666666666666667e-06, "loss": 0.0022, "step": 3184 }, { "epoch": 199.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 61.6113250230619, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.7272727272727273, \"recall\": 0.5333333333333333, \"f1-score\": 0.6153846153846153, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5033216783216783, \"recall\": 0.4434303943919329, \"f1-score\": 0.46275337226388397, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6860750360750361, \"recall\": 0.6666666666666666, \"f1-score\": 0.6683662953252589, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 46.275337226388395, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.83662953252589, "eval_loss": 0.9362739324569702, "eval_runtime": 2.9213, "eval_samples_per_second": 43.132, "step": 3184 }, { "epoch": 200.0, "learning_rate": 0.0, "loss": 0.0018, "step": 3200 }, { "epoch": 200.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 62.32465680926819, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.6, \"recall\": 0.42857142857142855, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"9\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"10\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"11\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"12\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 0.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5065684315684316, \"recall\": 0.448558599520138, \"f1-score\": 0.46768293589790105, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6912543805400948, \"recall\": 0.6746031746031746, \"f1-score\": 0.6760969872664772, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 46.768293589790105, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.60969872664772, "eval_loss": 0.9360297322273254, "eval_runtime": 2.5715, "eval_samples_per_second": 48.999, "step": 3200 }, { "epoch": 200.0, "step": 3200, "total_flos": 2.153382949997773e+16, "train_runtime": 2677.6105, "train_samples_per_second": 1.195 } ], "max_steps": 3200, "num_train_epochs": 200, "total_flos": 2.153382949997773e+16, "trial_name": null, "trial_params": null }