Update README.md
Browse files
README.md
CHANGED
@@ -6,16 +6,25 @@ tags:
|
|
6 |
- text-classification
|
7 |
- generated_from_setfit_trainer
|
8 |
metrics:
|
9 |
-
-
|
|
|
10 |
widget:
|
11 |
-
- text:
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
pipeline_tag: text-classification
|
18 |
-
inference:
|
19 |
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
20 |
model-index:
|
21 |
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
@@ -29,669 +38,70 @@ model-index:
|
|
29 |
split: test
|
30 |
metrics:
|
31 |
- type: metric
|
32 |
-
value: 0.
|
33 |
name: Metric
|
|
|
|
|
|
|
34 |
---
|
35 |
|
36 |
-
#
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
-
|
45 |
-
## Model Details
|
46 |
-
|
47 |
-
### Model Description
|
48 |
-
- **Model Type:** SetFit
|
49 |
-
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
50 |
-
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
-
- **Maximum Sequence Length:** 512 tokens
|
52 |
-
- **Number of Classes:** 8 classes
|
53 |
-
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
-
<!-- - **Language:** Unknown -->
|
55 |
-
<!-- - **License:** Unknown -->
|
56 |
-
|
57 |
-
### Model Sources
|
58 |
-
|
59 |
-
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
-
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
-
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
-
|
63 |
-
### Model Labels
|
64 |
-
| Label | Examples |
|
65 |
-
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
-
| 1 | <ul><li>'@Josh Collins "Ben 0" lmao don\'t forget the facts, Ben has more wins than that'</li><li>'poop siht are the fake news'</li><li>'Thank god these fire chiefs are being heard. People have no idea that they have been trying to meet up with the Prime Minister even before this bushfire crisis trying to alert the public of the devastating impacts of climate change.'</li></ul> |
|
67 |
-
| 3 | <ul><li>'Perfectly nailed by Ms.Zainab Sikander. Proud !'</li><li>"You're so sincere Dia about people's life."</li><li>'No words to express my gratitude to this hero.'</li></ul> |
|
68 |
-
| 6 | <ul><li>'I accept that.'</li><li>'@Viji same here'</li><li>'Facing same problem'</li></ul> |
|
69 |
-
| 5 | <ul><li>"@Rhynni Yeah thanks for asking, Your profile picture actually caught my eyes, Where are you from if you wouldn't mind me asking?"</li><li>'For what what did they do?'</li><li>'Aditya Jagtap who?'</li></ul> |
|
70 |
-
| 2 | <ul><li>'Or the save the world were gonna die people .......... No !!! the police joined in'</li><li>'No, I don\'t think I am missing the point at all. When they say "40% of people are obese" that\'s based on BMI, which is an inherently flawed measure by almost any standards. When you say "obesity is estimated to cost whatever," there\'s a lots of conflation of correlation and causation in that calculation. Diseases often correlated with obesity are not always caused by obesity. Either way, my point still stands. Weight should not be considered independently from all other measures of health, it\'s important to consider all the factors.'</li><li>"This is a scam under the guise of socialist action. Climate change is caused mainly by geothermal activity, hence can't be stopped."</li></ul> |
|
71 |
-
| 4 | <ul><li>'https://www.gov.uk/guidance/high-consequence-infectious-diseases-hcid#status-of-covid-19 Please somebody explain this to me. It makes absolutely no sense.'</li><li>"Look, you're obviously interested in this, so why don't you go an get a degree in climate science? Im sure the OU do one."</li><li>'All airports need to be stopped'</li></ul> |
|
72 |
-
| 0 | <ul><li>'Oh ... Following the same drama.'</li><li>'1st'</li><li>'Breaking news: England just left the EU!'</li></ul> |
|
73 |
-
| 7 | <ul><li>'Oh no, I did not mean it that way, it was completely misunderstood what I was saying. Didnt mean to offend you, sorry!'</li><li>'Sorry, really.'</li><li>"It's my fault, I shouldn't have done that, sorryyy!"</li></ul> |
|
74 |
-
|
75 |
-
## Evaluation
|
76 |
-
|
77 |
-
### Metrics
|
78 |
-
| Label | Metric |
|
79 |
-
|:--------|:-------|
|
80 |
-
| **all** | 0.6947 |
|
81 |
-
|
82 |
-
## Uses
|
83 |
-
|
84 |
-
### Direct Use for Inference
|
85 |
-
|
86 |
-
First install the SetFit library:
|
87 |
-
|
88 |
-
```bash
|
89 |
-
pip install setfit
|
90 |
-
```
|
91 |
-
|
92 |
-
Then you can load this model and run inference.
|
93 |
-
|
94 |
-
```python
|
95 |
-
from setfit import SetFitModel
|
96 |
-
|
97 |
-
# Download from the 🤗 Hub
|
98 |
-
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-single_label")
|
99 |
-
# Run inference
|
100 |
-
preds = model("Im sorry.")
|
101 |
-
```
|
102 |
-
|
103 |
-
<!--
|
104 |
-
### Downstream Use
|
105 |
-
|
106 |
-
*List how someone could finetune this model on their own dataset.*
|
107 |
-
-->
|
108 |
-
|
109 |
-
<!--
|
110 |
-
### Out-of-Scope Use
|
111 |
-
|
112 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
-
-->
|
114 |
-
|
115 |
-
<!--
|
116 |
-
## Bias, Risks and Limitations
|
117 |
-
|
118 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
-
-->
|
120 |
-
|
121 |
-
<!--
|
122 |
-
### Recommendations
|
123 |
|
124 |
-
|
125 |
-
-->
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
| Training set | Min | Median | Max |
|
131 |
-
|:-------------|:----|:--------|:-----|
|
132 |
-
| Word count | 1 | 25.3789 | 1681 |
|
133 |
|
134 |
-
|
135 |
-
|:------|:----------------------|
|
136 |
-
| 0 | 156 |
|
137 |
-
| 1 | 145 |
|
138 |
-
| 2 | 52 |
|
139 |
-
| 3 | 46 |
|
140 |
-
| 4 | 63 |
|
141 |
-
| 5 | 35 |
|
142 |
-
| 6 | 37 |
|
143 |
-
| 7 | 7 |
|
144 |
|
145 |
-
|
146 |
-
-
|
147 |
-
- num_epochs: (3, 3)
|
148 |
-
- max_steps: -1
|
149 |
-
- sampling_strategy: oversampling
|
150 |
-
- num_iterations: 40
|
151 |
-
- body_learning_rate: (1.752e-05, 1.752e-05)
|
152 |
-
- head_learning_rate: 1.752e-05
|
153 |
-
- loss: CosineSimilarityLoss
|
154 |
-
- distance_metric: cosine_distance
|
155 |
-
- margin: 0.25
|
156 |
-
- end_to_end: False
|
157 |
-
- use_amp: False
|
158 |
-
- warmup_proportion: 0.1
|
159 |
-
- seed: 30
|
160 |
-
- eval_max_steps: -1
|
161 |
-
- load_best_model_at_end: False
|
162 |
|
163 |
-
|
164 |
-
| Epoch | Step | Training Loss | Validation Loss |
|
165 |
-
|:------:|:----:|:-------------:|:---------------:|
|
166 |
-
| 0.0004 | 1 | 0.4094 | - |
|
167 |
-
| 0.0185 | 50 | 0.3207 | - |
|
168 |
-
| 0.0370 | 100 | 0.2635 | - |
|
169 |
-
| 0.0555 | 150 | 0.2347 | - |
|
170 |
-
| 0.0739 | 200 | 0.2686 | - |
|
171 |
-
| 0.0924 | 250 | 0.2575 | - |
|
172 |
-
| 0.1109 | 300 | 0.1983 | - |
|
173 |
-
| 0.1294 | 350 | 0.2387 | - |
|
174 |
-
| 0.1479 | 400 | 0.2002 | - |
|
175 |
-
| 0.1664 | 450 | 0.2112 | - |
|
176 |
-
| 0.1848 | 500 | 0.0913 | - |
|
177 |
-
| 0.2033 | 550 | 0.1715 | - |
|
178 |
-
| 0.2218 | 600 | 0.0686 | - |
|
179 |
-
| 0.2403 | 650 | 0.0166 | - |
|
180 |
-
| 0.2588 | 700 | 0.0128 | - |
|
181 |
-
| 0.2773 | 750 | 0.0102 | - |
|
182 |
-
| 0.2957 | 800 | 0.0071 | - |
|
183 |
-
| 0.3142 | 850 | 0.0012 | - |
|
184 |
-
| 0.3327 | 900 | 0.0016 | - |
|
185 |
-
| 0.3512 | 950 | 0.0035 | - |
|
186 |
-
| 0.3697 | 1000 | 0.0012 | - |
|
187 |
-
| 0.3882 | 1050 | 0.0003 | - |
|
188 |
-
| 0.4067 | 1100 | 0.001 | - |
|
189 |
-
| 0.4251 | 1150 | 0.0025 | - |
|
190 |
-
| 0.4436 | 1200 | 0.001 | - |
|
191 |
-
| 0.4621 | 1250 | 0.0006 | - |
|
192 |
-
| 0.4806 | 1300 | 0.0006 | - |
|
193 |
-
| 0.4991 | 1350 | 0.0004 | - |
|
194 |
-
| 0.5176 | 1400 | 0.0012 | - |
|
195 |
-
| 0.5360 | 1450 | 0.0051 | - |
|
196 |
-
| 0.5545 | 1500 | 0.0009 | - |
|
197 |
-
| 0.5730 | 1550 | 0.0003 | - |
|
198 |
-
| 0.5915 | 1600 | 0.0004 | - |
|
199 |
-
| 0.6100 | 1650 | 0.0009 | - |
|
200 |
-
| 0.6285 | 1700 | 0.0002 | - |
|
201 |
-
| 0.6470 | 1750 | 0.0003 | - |
|
202 |
-
| 0.6654 | 1800 | 0.0005 | - |
|
203 |
-
| 0.6839 | 1850 | 0.0003 | - |
|
204 |
-
| 0.7024 | 1900 | 0.0003 | - |
|
205 |
-
| 0.7209 | 1950 | 0.0005 | - |
|
206 |
-
| 0.7394 | 2000 | 0.0004 | - |
|
207 |
-
| 0.7579 | 2050 | 0.0008 | - |
|
208 |
-
| 0.7763 | 2100 | 0.0009 | - |
|
209 |
-
| 0.7948 | 2150 | 0.0002 | - |
|
210 |
-
| 0.8133 | 2200 | 0.0002 | - |
|
211 |
-
| 0.8318 | 2250 | 0.0002 | - |
|
212 |
-
| 0.8503 | 2300 | 0.0008 | - |
|
213 |
-
| 0.8688 | 2350 | 0.0002 | - |
|
214 |
-
| 0.8872 | 2400 | 0.0002 | - |
|
215 |
-
| 0.9057 | 2450 | 0.0003 | - |
|
216 |
-
| 0.9242 | 2500 | 0.0013 | - |
|
217 |
-
| 0.9427 | 2550 | 0.0003 | - |
|
218 |
-
| 0.9612 | 2600 | 0.0002 | - |
|
219 |
-
| 0.9797 | 2650 | 0.0002 | - |
|
220 |
-
| 0.9982 | 2700 | 0.0003 | - |
|
221 |
-
| 1.0166 | 2750 | 0.0002 | - |
|
222 |
-
| 1.0351 | 2800 | 0.0008 | - |
|
223 |
-
| 1.0536 | 2850 | 0.0001 | - |
|
224 |
-
| 1.0721 | 2900 | 0.0004 | - |
|
225 |
-
| 1.0906 | 2950 | 0.0001 | - |
|
226 |
-
| 1.1091 | 3000 | 0.0001 | - |
|
227 |
-
| 1.1275 | 3050 | 0.0002 | - |
|
228 |
-
| 1.1460 | 3100 | 0.0002 | - |
|
229 |
-
| 1.1645 | 3150 | 0.0002 | - |
|
230 |
-
| 1.1830 | 3200 | 0.0001 | - |
|
231 |
-
| 1.2015 | 3250 | 0.0001 | - |
|
232 |
-
| 1.2200 | 3300 | 0.0001 | - |
|
233 |
-
| 1.2384 | 3350 | 0.0041 | - |
|
234 |
-
| 1.2569 | 3400 | 0.0002 | - |
|
235 |
-
| 1.2754 | 3450 | 0.0001 | - |
|
236 |
-
| 1.2939 | 3500 | 0.0001 | - |
|
237 |
-
| 1.3124 | 3550 | 0.0002 | - |
|
238 |
-
| 1.3309 | 3600 | 0.0 | - |
|
239 |
-
| 1.3494 | 3650 | 0.0001 | - |
|
240 |
-
| 1.3678 | 3700 | 0.0001 | - |
|
241 |
-
| 1.3863 | 3750 | 0.0002 | - |
|
242 |
-
| 1.4048 | 3800 | 0.0001 | - |
|
243 |
-
| 1.4233 | 3850 | 0.0 | - |
|
244 |
-
| 1.4418 | 3900 | 0.0001 | - |
|
245 |
-
| 1.4603 | 3950 | 0.0001 | - |
|
246 |
-
| 1.4787 | 4000 | 0.0001 | - |
|
247 |
-
| 1.4972 | 4050 | 0.0001 | - |
|
248 |
-
| 1.5157 | 4100 | 0.0001 | - |
|
249 |
-
| 1.5342 | 4150 | 0.0001 | - |
|
250 |
-
| 1.5527 | 4200 | 0.0001 | - |
|
251 |
-
| 1.5712 | 4250 | 0.0001 | - |
|
252 |
-
| 1.5896 | 4300 | 0.0001 | - |
|
253 |
-
| 1.6081 | 4350 | 0.0 | - |
|
254 |
-
| 1.6266 | 4400 | 0.0001 | - |
|
255 |
-
| 1.6451 | 4450 | 0.0019 | - |
|
256 |
-
| 1.6636 | 4500 | 0.0001 | - |
|
257 |
-
| 1.6821 | 4550 | 0.0003 | - |
|
258 |
-
| 1.7006 | 4600 | 0.0002 | - |
|
259 |
-
| 1.7190 | 4650 | 0.0001 | - |
|
260 |
-
| 1.7375 | 4700 | 0.0001 | - |
|
261 |
-
| 1.7560 | 4750 | 0.0002 | - |
|
262 |
-
| 1.7745 | 4800 | 0.0001 | - |
|
263 |
-
| 1.7930 | 4850 | 0.0001 | - |
|
264 |
-
| 1.8115 | 4900 | 0.0003 | - |
|
265 |
-
| 1.8299 | 4950 | 0.056 | - |
|
266 |
-
| 1.8484 | 5000 | 0.0001 | - |
|
267 |
-
| 1.8669 | 5050 | 0.0001 | - |
|
268 |
-
| 1.8854 | 5100 | 0.0001 | - |
|
269 |
-
| 1.9039 | 5150 | 0.0001 | - |
|
270 |
-
| 1.9224 | 5200 | 0.0 | - |
|
271 |
-
| 1.9409 | 5250 | 0.0001 | - |
|
272 |
-
| 1.9593 | 5300 | 0.0001 | - |
|
273 |
-
| 1.9778 | 5350 | 0.0001 | - |
|
274 |
-
| 1.9963 | 5400 | 0.0002 | - |
|
275 |
-
| 2.0148 | 5450 | 0.0 | - |
|
276 |
-
| 2.0333 | 5500 | 0.0001 | - |
|
277 |
-
| 2.0518 | 5550 | 0.0 | - |
|
278 |
-
| 2.0702 | 5600 | 0.0004 | - |
|
279 |
-
| 2.0887 | 5650 | 0.0001 | - |
|
280 |
-
| 2.1072 | 5700 | 0.0001 | - |
|
281 |
-
| 2.1257 | 5750 | 0.0001 | - |
|
282 |
-
| 2.1442 | 5800 | 0.0001 | - |
|
283 |
-
| 2.1627 | 5850 | 0.0001 | - |
|
284 |
-
| 2.1811 | 5900 | 0.0 | - |
|
285 |
-
| 2.1996 | 5950 | 0.0001 | - |
|
286 |
-
| 2.2181 | 6000 | 0.0001 | - |
|
287 |
-
| 2.2366 | 6050 | 0.0001 | - |
|
288 |
-
| 2.2551 | 6100 | 0.0001 | - |
|
289 |
-
| 2.2736 | 6150 | 0.0001 | - |
|
290 |
-
| 2.2921 | 6200 | 0.0 | - |
|
291 |
-
| 2.3105 | 6250 | 0.0001 | - |
|
292 |
-
| 2.3290 | 6300 | 0.0 | - |
|
293 |
-
| 2.3475 | 6350 | 0.0001 | - |
|
294 |
-
| 2.3660 | 6400 | 0.0001 | - |
|
295 |
-
| 2.3845 | 6450 | 0.0001 | - |
|
296 |
-
| 2.4030 | 6500 | 0.0 | - |
|
297 |
-
| 2.4214 | 6550 | 0.0001 | - |
|
298 |
-
| 2.4399 | 6600 | 0.0001 | - |
|
299 |
-
| 2.4584 | 6650 | 0.0 | - |
|
300 |
-
| 2.4769 | 6700 | 0.0 | - |
|
301 |
-
| 2.4954 | 6750 | 0.0002 | - |
|
302 |
-
| 2.5139 | 6800 | 0.0001 | - |
|
303 |
-
| 2.5323 | 6850 | 0.0001 | - |
|
304 |
-
| 2.5508 | 6900 | 0.0001 | - |
|
305 |
-
| 2.5693 | 6950 | 0.0001 | - |
|
306 |
-
| 2.5878 | 7000 | 0.0 | - |
|
307 |
-
| 2.6063 | 7050 | 0.0001 | - |
|
308 |
-
| 2.6248 | 7100 | 0.0001 | - |
|
309 |
-
| 2.6433 | 7150 | 0.0001 | - |
|
310 |
-
| 2.6617 | 7200 | 0.0001 | - |
|
311 |
-
| 2.6802 | 7250 | 0.0001 | - |
|
312 |
-
| 2.6987 | 7300 | 0.0003 | - |
|
313 |
-
| 2.7172 | 7350 | 0.0001 | - |
|
314 |
-
| 2.7357 | 7400 | 0.0 | - |
|
315 |
-
| 2.7542 | 7450 | 0.0 | - |
|
316 |
-
| 2.7726 | 7500 | 0.0 | - |
|
317 |
-
| 2.7911 | 7550 | 0.0001 | - |
|
318 |
-
| 2.8096 | 7600 | 0.0001 | - |
|
319 |
-
| 2.8281 | 7650 | 0.0001 | - |
|
320 |
-
| 2.8466 | 7700 | 0.0001 | - |
|
321 |
-
| 2.8651 | 7750 | 0.0001 | - |
|
322 |
-
| 2.8835 | 7800 | 0.0001 | - |
|
323 |
-
| 2.9020 | 7850 | 0.0001 | - |
|
324 |
-
| 2.9205 | 7900 | 0.0002 | - |
|
325 |
-
| 2.9390 | 7950 | 0.0001 | - |
|
326 |
-
| 2.9575 | 8000 | 0.0 | - |
|
327 |
-
| 2.9760 | 8050 | 0.0 | - |
|
328 |
-
| 2.9945 | 8100 | 0.0001 | - |
|
329 |
-
| 0.0004 | 1 | 0.0001 | - |
|
330 |
-
| 0.0185 | 50 | 0.0001 | - |
|
331 |
-
| 0.0370 | 100 | 0.0001 | - |
|
332 |
-
| 0.0555 | 150 | 0.0001 | - |
|
333 |
-
| 0.0739 | 200 | 0.0001 | - |
|
334 |
-
| 0.0924 | 250 | 0.0001 | - |
|
335 |
-
| 0.1109 | 300 | 0.0001 | - |
|
336 |
-
| 0.1294 | 350 | 0.0001 | - |
|
337 |
-
| 0.1479 | 400 | 0.0001 | - |
|
338 |
-
| 0.1664 | 450 | 0.0005 | - |
|
339 |
-
| 0.1848 | 500 | 0.0007 | - |
|
340 |
-
| 0.2033 | 550 | 0.0003 | - |
|
341 |
-
| 0.2218 | 600 | 0.0003 | - |
|
342 |
-
| 0.2403 | 650 | 0.0 | - |
|
343 |
-
| 0.2588 | 700 | 0.0001 | - |
|
344 |
-
| 0.2773 | 750 | 0.0001 | - |
|
345 |
-
| 0.2957 | 800 | 0.0002 | - |
|
346 |
-
| 0.3142 | 850 | 0.0 | - |
|
347 |
-
| 0.3327 | 900 | 0.0001 | - |
|
348 |
-
| 0.3512 | 950 | 0.0044 | - |
|
349 |
-
| 0.3697 | 1000 | 0.0001 | - |
|
350 |
-
| 0.3882 | 1050 | 0.0004 | - |
|
351 |
-
| 0.4067 | 1100 | 0.0006 | - |
|
352 |
-
| 0.4251 | 1150 | 0.0012 | - |
|
353 |
-
| 0.4436 | 1200 | 0.0002 | - |
|
354 |
-
| 0.4621 | 1250 | 0.0001 | - |
|
355 |
-
| 0.4806 | 1300 | 0.0 | - |
|
356 |
-
| 0.4991 | 1350 | 0.0001 | - |
|
357 |
-
| 0.5176 | 1400 | 0.0003 | - |
|
358 |
-
| 0.5360 | 1450 | 0.0001 | - |
|
359 |
-
| 0.5545 | 1500 | 0.0001 | - |
|
360 |
-
| 0.5730 | 1550 | 0.0002 | - |
|
361 |
-
| 0.5915 | 1600 | 0.0001 | - |
|
362 |
-
| 0.6100 | 1650 | 0.0002 | - |
|
363 |
-
| 0.6285 | 1700 | 0.0 | - |
|
364 |
-
| 0.6470 | 1750 | 0.0001 | - |
|
365 |
-
| 0.6654 | 1800 | 0.0001 | - |
|
366 |
-
| 0.6839 | 1850 | 0.0001 | - |
|
367 |
-
| 0.7024 | 1900 | 0.0001 | - |
|
368 |
-
| 0.7209 | 1950 | 0.0017 | - |
|
369 |
-
| 0.7394 | 2000 | 0.0001 | - |
|
370 |
-
| 0.7579 | 2050 | 0.0002 | - |
|
371 |
-
| 0.7763 | 2100 | 0.0002 | - |
|
372 |
-
| 0.7948 | 2150 | 0.0003 | - |
|
373 |
-
| 0.8133 | 2200 | 0.0001 | - |
|
374 |
-
| 0.8318 | 2250 | 0.0001 | - |
|
375 |
-
| 0.8503 | 2300 | 0.0002 | - |
|
376 |
-
| 0.8688 | 2350 | 0.0 | - |
|
377 |
-
| 0.8872 | 2400 | 0.0001 | - |
|
378 |
-
| 0.9057 | 2450 | 0.0001 | - |
|
379 |
-
| 0.9242 | 2500 | 0.0002 | - |
|
380 |
-
| 0.9427 | 2550 | 0.0001 | - |
|
381 |
-
| 0.9612 | 2600 | 0.0 | - |
|
382 |
-
| 0.9797 | 2650 | 0.0 | - |
|
383 |
-
| 0.9982 | 2700 | 0.0001 | - |
|
384 |
-
| 1.0166 | 2750 | 0.0001 | - |
|
385 |
-
| 1.0351 | 2800 | 0.0001 | - |
|
386 |
-
| 1.0536 | 2850 | 0.0 | - |
|
387 |
-
| 1.0721 | 2900 | 0.0 | - |
|
388 |
-
| 1.0906 | 2950 | 0.0001 | - |
|
389 |
-
| 1.1091 | 3000 | 0.0 | - |
|
390 |
-
| 1.1275 | 3050 | 0.0001 | - |
|
391 |
-
| 1.1460 | 3100 | 0.0001 | - |
|
392 |
-
| 1.1645 | 3150 | 0.0 | - |
|
393 |
-
| 1.1830 | 3200 | 0.0 | - |
|
394 |
-
| 1.2015 | 3250 | 0.0 | - |
|
395 |
-
| 1.2200 | 3300 | 0.0 | - |
|
396 |
-
| 1.2384 | 3350 | 0.0002 | - |
|
397 |
-
| 1.2569 | 3400 | 0.0001 | - |
|
398 |
-
| 1.2754 | 3450 | 0.0 | - |
|
399 |
-
| 1.2939 | 3500 | 0.0001 | - |
|
400 |
-
| 1.3124 | 3550 | 0.0001 | - |
|
401 |
-
| 1.3309 | 3600 | 0.0 | - |
|
402 |
-
| 1.3494 | 3650 | 0.0 | - |
|
403 |
-
| 1.3678 | 3700 | 0.0 | - |
|
404 |
-
| 1.3863 | 3750 | 0.0001 | - |
|
405 |
-
| 1.4048 | 3800 | 0.0 | - |
|
406 |
-
| 1.4233 | 3850 | 0.0 | - |
|
407 |
-
| 1.4418 | 3900 | 0.0 | - |
|
408 |
-
| 1.4603 | 3950 | 0.0 | - |
|
409 |
-
| 1.4787 | 4000 | 0.0001 | - |
|
410 |
-
| 1.4972 | 4050 | 0.0 | - |
|
411 |
-
| 1.5157 | 4100 | 0.0 | - |
|
412 |
-
| 1.5342 | 4150 | 0.0 | - |
|
413 |
-
| 1.5527 | 4200 | 0.0001 | - |
|
414 |
-
| 1.5712 | 4250 | 0.0001 | - |
|
415 |
-
| 1.5896 | 4300 | 0.0 | - |
|
416 |
-
| 1.6081 | 4350 | 0.0 | - |
|
417 |
-
| 1.6266 | 4400 | 0.0001 | - |
|
418 |
-
| 1.6451 | 4450 | 0.0 | - |
|
419 |
-
| 1.6636 | 4500 | 0.0001 | - |
|
420 |
-
| 1.6821 | 4550 | 0.0001 | - |
|
421 |
-
| 1.7006 | 4600 | 0.0001 | - |
|
422 |
-
| 1.7190 | 4650 | 0.0 | - |
|
423 |
-
| 1.7375 | 4700 | 0.0 | - |
|
424 |
-
| 1.7560 | 4750 | 0.0 | - |
|
425 |
-
| 1.7745 | 4800 | 0.0 | - |
|
426 |
-
| 1.7930 | 4850 | 0.0001 | - |
|
427 |
-
| 1.8115 | 4900 | 0.0001 | - |
|
428 |
-
| 1.8299 | 4950 | 0.0 | - |
|
429 |
-
| 1.8484 | 5000 | 0.0001 | - |
|
430 |
-
| 1.8669 | 5050 | 0.0 | - |
|
431 |
-
| 1.8854 | 5100 | 0.0 | - |
|
432 |
-
| 1.9039 | 5150 | 0.0 | - |
|
433 |
-
| 1.9224 | 5200 | 0.0 | - |
|
434 |
-
| 1.9409 | 5250 | 0.0 | - |
|
435 |
-
| 1.9593 | 5300 | 0.0 | - |
|
436 |
-
| 1.9778 | 5350 | 0.0 | - |
|
437 |
-
| 1.9963 | 5400 | 0.0 | - |
|
438 |
-
| 2.0148 | 5450 | 0.0 | - |
|
439 |
-
| 2.0333 | 5500 | 0.0 | - |
|
440 |
-
| 2.0518 | 5550 | 0.0 | - |
|
441 |
-
| 2.0702 | 5600 | 0.0001 | - |
|
442 |
-
| 2.0887 | 5650 | 0.0 | - |
|
443 |
-
| 2.1072 | 5700 | 0.0 | - |
|
444 |
-
| 2.1257 | 5750 | 0.0 | - |
|
445 |
-
| 2.1442 | 5800 | 0.0 | - |
|
446 |
-
| 2.1627 | 5850 | 0.0001 | - |
|
447 |
-
| 2.1811 | 5900 | 0.0 | - |
|
448 |
-
| 2.1996 | 5950 | 0.0 | - |
|
449 |
-
| 2.2181 | 6000 | 0.0 | - |
|
450 |
-
| 2.2366 | 6050 | 0.0 | - |
|
451 |
-
| 2.2551 | 6100 | 0.0 | - |
|
452 |
-
| 2.2736 | 6150 | 0.0001 | - |
|
453 |
-
| 2.2921 | 6200 | 0.0 | - |
|
454 |
-
| 2.3105 | 6250 | 0.0 | - |
|
455 |
-
| 2.3290 | 6300 | 0.0 | - |
|
456 |
-
| 2.3475 | 6350 | 0.0 | - |
|
457 |
-
| 2.3660 | 6400 | 0.0 | - |
|
458 |
-
| 2.3845 | 6450 | 0.0 | - |
|
459 |
-
| 2.4030 | 6500 | 0.0 | - |
|
460 |
-
| 2.4214 | 6550 | 0.0 | - |
|
461 |
-
| 2.4399 | 6600 | 0.0 | - |
|
462 |
-
| 2.4584 | 6650 | 0.0 | - |
|
463 |
-
| 2.4769 | 6700 | 0.0 | - |
|
464 |
-
| 2.4954 | 6750 | 0.0001 | - |
|
465 |
-
| 2.5139 | 6800 | 0.0001 | - |
|
466 |
-
| 2.5323 | 6850 | 0.0 | - |
|
467 |
-
| 2.5508 | 6900 | 0.0 | - |
|
468 |
-
| 2.5693 | 6950 | 0.0 | - |
|
469 |
-
| 2.5878 | 7000 | 0.0 | - |
|
470 |
-
| 2.6063 | 7050 | 0.0 | - |
|
471 |
-
| 2.6248 | 7100 | 0.0 | - |
|
472 |
-
| 2.6433 | 7150 | 0.0001 | - |
|
473 |
-
| 2.6617 | 7200 | 0.0 | - |
|
474 |
-
| 2.6802 | 7250 | 0.0 | - |
|
475 |
-
| 2.6987 | 7300 | 0.0001 | - |
|
476 |
-
| 2.7172 | 7350 | 0.0 | - |
|
477 |
-
| 2.7357 | 7400 | 0.0 | - |
|
478 |
-
| 2.7542 | 7450 | 0.0 | - |
|
479 |
-
| 2.7726 | 7500 | 0.0 | - |
|
480 |
-
| 2.7911 | 7550 | 0.0 | - |
|
481 |
-
| 2.8096 | 7600 | 0.0 | - |
|
482 |
-
| 2.8281 | 7650 | 0.0 | - |
|
483 |
-
| 2.8466 | 7700 | 0.0001 | - |
|
484 |
-
| 2.8651 | 7750 | 0.0 | - |
|
485 |
-
| 2.8835 | 7800 | 0.0001 | - |
|
486 |
-
| 2.9020 | 7850 | 0.0 | - |
|
487 |
-
| 2.9205 | 7900 | 0.0001 | - |
|
488 |
-
| 2.9390 | 7950 | 0.0001 | - |
|
489 |
-
| 2.9575 | 8000 | 0.0 | - |
|
490 |
-
| 2.9760 | 8050 | 0.0 | - |
|
491 |
-
| 2.9945 | 8100 | 0.0 | - |
|
492 |
-
| 0.0004 | 1 | 0.0 | - |
|
493 |
-
| 0.0185 | 50 | 0.0 | - |
|
494 |
-
| 0.0370 | 100 | 0.0 | - |
|
495 |
-
| 0.0555 | 150 | 0.0 | - |
|
496 |
-
| 0.0739 | 200 | 0.0 | - |
|
497 |
-
| 0.0924 | 250 | 0.0 | - |
|
498 |
-
| 0.1109 | 300 | 0.0 | - |
|
499 |
-
| 0.1294 | 350 | 0.0005 | - |
|
500 |
-
| 0.1479 | 400 | 0.0002 | - |
|
501 |
-
| 0.1664 | 450 | 0.0001 | - |
|
502 |
-
| 0.1848 | 500 | 0.0009 | - |
|
503 |
-
| 0.2033 | 550 | 0.1068 | - |
|
504 |
-
| 0.2218 | 600 | 0.0 | - |
|
505 |
-
| 0.2403 | 650 | 0.0 | - |
|
506 |
-
| 0.2588 | 700 | 0.0 | - |
|
507 |
-
| 0.2773 | 750 | 0.0374 | - |
|
508 |
-
| 0.2957 | 800 | 0.0001 | - |
|
509 |
-
| 0.3142 | 850 | 0.0 | - |
|
510 |
-
| 0.3327 | 900 | 0.0 | - |
|
511 |
-
| 0.3512 | 950 | 0.0 | - |
|
512 |
-
| 0.3697 | 1000 | 0.0001 | - |
|
513 |
-
| 0.3882 | 1050 | 0.0 | - |
|
514 |
-
| 0.4067 | 1100 | 0.0001 | - |
|
515 |
-
| 0.4251 | 1150 | 0.0002 | - |
|
516 |
-
| 0.4436 | 1200 | 0.0001 | - |
|
517 |
-
| 0.4621 | 1250 | 0.0012 | - |
|
518 |
-
| 0.4806 | 1300 | 0.0 | - |
|
519 |
-
| 0.4991 | 1350 | 0.0001 | - |
|
520 |
-
| 0.5176 | 1400 | 0.0001 | - |
|
521 |
-
| 0.5360 | 1450 | 0.0 | - |
|
522 |
-
| 0.5545 | 1500 | 0.0001 | - |
|
523 |
-
| 0.5730 | 1550 | 0.0 | - |
|
524 |
-
| 0.5915 | 1600 | 0.0267 | - |
|
525 |
-
| 0.6100 | 1650 | 0.0001 | - |
|
526 |
-
| 0.6285 | 1700 | 0.0 | - |
|
527 |
-
| 0.6470 | 1750 | 0.0 | - |
|
528 |
-
| 0.6654 | 1800 | 0.0 | - |
|
529 |
-
| 0.6839 | 1850 | 0.0 | - |
|
530 |
-
| 0.7024 | 1900 | 0.0 | - |
|
531 |
-
| 0.7209 | 1950 | 0.0 | - |
|
532 |
-
| 0.7394 | 2000 | 0.0 | - |
|
533 |
-
| 0.7579 | 2050 | 0.0001 | - |
|
534 |
-
| 0.7763 | 2100 | 0.0 | - |
|
535 |
-
| 0.7948 | 2150 | 0.0001 | - |
|
536 |
-
| 0.8133 | 2200 | 0.0001 | - |
|
537 |
-
| 0.8318 | 2250 | 0.0 | - |
|
538 |
-
| 0.8503 | 2300 | 0.0001 | - |
|
539 |
-
| 0.8688 | 2350 | 0.1116 | - |
|
540 |
-
| 0.8872 | 2400 | 0.0042 | - |
|
541 |
-
| 0.9057 | 2450 | 0.0001 | - |
|
542 |
-
| 0.9242 | 2500 | 0.0006 | - |
|
543 |
-
| 0.9427 | 2550 | 0.0 | - |
|
544 |
-
| 0.9612 | 2600 | 0.0615 | - |
|
545 |
-
| 0.9797 | 2650 | 0.0002 | - |
|
546 |
-
| 0.9982 | 2700 | 0.0 | - |
|
547 |
-
| 1.0166 | 2750 | 0.0003 | - |
|
548 |
-
| 1.0351 | 2800 | 0.0001 | - |
|
549 |
-
| 1.0536 | 2850 | 0.0 | - |
|
550 |
-
| 1.0721 | 2900 | 0.0 | - |
|
551 |
-
| 1.0906 | 2950 | 0.0 | - |
|
552 |
-
| 1.1091 | 3000 | 0.0 | - |
|
553 |
-
| 1.1275 | 3050 | 0.0001 | - |
|
554 |
-
| 1.1460 | 3100 | 0.0 | - |
|
555 |
-
| 1.1645 | 3150 | 0.0 | - |
|
556 |
-
| 1.1830 | 3200 | 0.0 | - |
|
557 |
-
| 1.2015 | 3250 | 0.0 | - |
|
558 |
-
| 1.2200 | 3300 | 0.0 | - |
|
559 |
-
| 1.2384 | 3350 | 0.0 | - |
|
560 |
-
| 1.2569 | 3400 | 0.0 | - |
|
561 |
-
| 1.2754 | 3450 | 0.0 | - |
|
562 |
-
| 1.2939 | 3500 | 0.0 | - |
|
563 |
-
| 1.3124 | 3550 | 0.0 | - |
|
564 |
-
| 1.3309 | 3600 | 0.0 | - |
|
565 |
-
| 1.3494 | 3650 | 0.0 | - |
|
566 |
-
| 1.3678 | 3700 | 0.0 | - |
|
567 |
-
| 1.3863 | 3750 | 0.0 | - |
|
568 |
-
| 1.4048 | 3800 | 0.0003 | - |
|
569 |
-
| 1.4233 | 3850 | 0.0 | - |
|
570 |
-
| 1.4418 | 3900 | 0.0001 | - |
|
571 |
-
| 1.4603 | 3950 | 0.0 | - |
|
572 |
-
| 1.4787 | 4000 | 0.0001 | - |
|
573 |
-
| 1.4972 | 4050 | 0.0 | - |
|
574 |
-
| 1.5157 | 4100 | 0.0 | - |
|
575 |
-
| 1.5342 | 4150 | 0.0 | - |
|
576 |
-
| 1.5527 | 4200 | 0.0 | - |
|
577 |
-
| 1.5712 | 4250 | 0.0 | - |
|
578 |
-
| 1.5896 | 4300 | 0.0 | - |
|
579 |
-
| 1.6081 | 4350 | 0.0 | - |
|
580 |
-
| 1.6266 | 4400 | 0.0 | - |
|
581 |
-
| 1.6451 | 4450 | 0.0 | - |
|
582 |
-
| 1.6636 | 4500 | 0.0 | - |
|
583 |
-
| 1.6821 | 4550 | 0.0001 | - |
|
584 |
-
| 1.7006 | 4600 | 0.0 | - |
|
585 |
-
| 1.7190 | 4650 | 0.0 | - |
|
586 |
-
| 1.7375 | 4700 | 0.0 | - |
|
587 |
-
| 1.7560 | 4750 | 0.0 | - |
|
588 |
-
| 1.7745 | 4800 | 0.0 | - |
|
589 |
-
| 1.7930 | 4850 | 0.0 | - |
|
590 |
-
| 1.8115 | 4900 | 0.0 | - |
|
591 |
-
| 1.8299 | 4950 | 0.0 | - |
|
592 |
-
| 1.8484 | 5000 | 0.0 | - |
|
593 |
-
| 1.8669 | 5050 | 0.0 | - |
|
594 |
-
| 1.8854 | 5100 | 0.0 | - |
|
595 |
-
| 1.9039 | 5150 | 0.0 | - |
|
596 |
-
| 1.9224 | 5200 | 0.0 | - |
|
597 |
-
| 1.9409 | 5250 | 0.0 | - |
|
598 |
-
| 1.9593 | 5300 | 0.0 | - |
|
599 |
-
| 1.9778 | 5350 | 0.0 | - |
|
600 |
-
| 1.9963 | 5400 | 0.0 | - |
|
601 |
-
| 2.0148 | 5450 | 0.0 | - |
|
602 |
-
| 2.0333 | 5500 | 0.0 | - |
|
603 |
-
| 2.0518 | 5550 | 0.0 | - |
|
604 |
-
| 2.0702 | 5600 | 0.0001 | - |
|
605 |
-
| 2.0887 | 5650 | 0.0 | - |
|
606 |
-
| 2.1072 | 5700 | 0.0 | - |
|
607 |
-
| 2.1257 | 5750 | 0.0 | - |
|
608 |
-
| 2.1442 | 5800 | 0.0001 | - |
|
609 |
-
| 2.1627 | 5850 | 0.0 | - |
|
610 |
-
| 2.1811 | 5900 | 0.0 | - |
|
611 |
-
| 2.1996 | 5950 | 0.0 | - |
|
612 |
-
| 2.2181 | 6000 | 0.0 | - |
|
613 |
-
| 2.2366 | 6050 | 0.0 | - |
|
614 |
-
| 2.2551 | 6100 | 0.0 | - |
|
615 |
-
| 2.2736 | 6150 | 0.0 | - |
|
616 |
-
| 2.2921 | 6200 | 0.0 | - |
|
617 |
-
| 2.3105 | 6250 | 0.0 | - |
|
618 |
-
| 2.3290 | 6300 | 0.0 | - |
|
619 |
-
| 2.3475 | 6350 | 0.0 | - |
|
620 |
-
| 2.3660 | 6400 | 0.0 | - |
|
621 |
-
| 2.3845 | 6450 | 0.0 | - |
|
622 |
-
| 2.4030 | 6500 | 0.0 | - |
|
623 |
-
| 2.4214 | 6550 | 0.0 | - |
|
624 |
-
| 2.4399 | 6600 | 0.0 | - |
|
625 |
-
| 2.4584 | 6650 | 0.0 | - |
|
626 |
-
| 2.4769 | 6700 | 0.0 | - |
|
627 |
-
| 2.4954 | 6750 | 0.0 | - |
|
628 |
-
| 2.5139 | 6800 | 0.0001 | - |
|
629 |
-
| 2.5323 | 6850 | 0.0 | - |
|
630 |
-
| 2.5508 | 6900 | 0.0 | - |
|
631 |
-
| 2.5693 | 6950 | 0.0 | - |
|
632 |
-
| 2.5878 | 7000 | 0.0 | - |
|
633 |
-
| 2.6063 | 7050 | 0.0 | - |
|
634 |
-
| 2.6248 | 7100 | 0.0 | - |
|
635 |
-
| 2.6433 | 7150 | 0.0 | - |
|
636 |
-
| 2.6617 | 7200 | 0.0 | - |
|
637 |
-
| 2.6802 | 7250 | 0.0 | - |
|
638 |
-
| 2.6987 | 7300 | 0.0 | - |
|
639 |
-
| 2.7172 | 7350 | 0.0 | - |
|
640 |
-
| 2.7357 | 7400 | 0.0 | - |
|
641 |
-
| 2.7542 | 7450 | 0.0 | - |
|
642 |
-
| 2.7726 | 7500 | 0.0 | - |
|
643 |
-
| 2.7911 | 7550 | 0.0 | - |
|
644 |
-
| 2.8096 | 7600 | 0.0 | - |
|
645 |
-
| 2.8281 | 7650 | 0.0 | - |
|
646 |
-
| 2.8466 | 7700 | 0.0 | - |
|
647 |
-
| 2.8651 | 7750 | 0.0 | - |
|
648 |
-
| 2.8835 | 7800 | 0.0 | - |
|
649 |
-
| 2.9020 | 7850 | 0.0 | - |
|
650 |
-
| 2.9205 | 7900 | 0.0 | - |
|
651 |
-
| 2.9390 | 7950 | 0.0 | - |
|
652 |
-
| 2.9575 | 8000 | 0.0 | - |
|
653 |
-
| 2.9760 | 8050 | 0.0 | - |
|
654 |
-
| 2.9945 | 8100 | 0.0 | - |
|
655 |
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
|
665 |
-
|
|
|
|
|
|
|
|
|
|
|
666 |
|
667 |
-
|
668 |
-
```bibtex
|
669 |
-
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
670 |
-
doi = {10.48550/ARXIV.2209.11055},
|
671 |
-
url = {https://arxiv.org/abs/2209.11055},
|
672 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
673 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
674 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
675 |
-
publisher = {arXiv},
|
676 |
-
year = {2022},
|
677 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
678 |
-
}
|
679 |
-
```
|
680 |
|
681 |
-
|
682 |
-
## Glossary
|
683 |
|
684 |
-
|
685 |
-
-->
|
686 |
|
687 |
-
|
688 |
-
## Model Card Authors
|
689 |
|
690 |
-
|
691 |
-
-->
|
692 |
|
693 |
-
|
694 |
-
## Model Card Contact
|
695 |
|
696 |
-
|
697 |
-
-->
|
|
|
6 |
- text-classification
|
7 |
- generated_from_setfit_trainer
|
8 |
metrics:
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
widget:
|
12 |
+
- text: >-
|
13 |
+
A combined 20 million people per year die of smoking and hunger, so
|
14 |
+
authorities can't seem to feed people and they allow you to buy cigarettes
|
15 |
+
but we are facing another lockdown for a virus that has a 99.5% survival
|
16 |
+
rate!!! THINK PEOPLE. LOOK AT IT LOGICALLY WITH YOUR OWN EYES.
|
17 |
+
- text: >-
|
18 |
+
Scientists do not agree on the consequences of climate change, nor is there
|
19 |
+
any consensus on that subject. The predictions on that from are just
|
20 |
+
ascientific speculation. Bring on the warming."
|
21 |
+
- text: >-
|
22 |
+
If Tam is our "top doctor"....I am going back to leaches and voodoo...just
|
23 |
+
as much science in that as the crap she spouts
|
24 |
+
- text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions and just a good actor."
|
25 |
+
- text: my dad had huge ones..so they may be real..
|
26 |
pipeline_tag: text-classification
|
27 |
+
inference: false
|
28 |
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
29 |
model-index:
|
30 |
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
|
|
38 |
split: test
|
39 |
metrics:
|
40 |
- type: metric
|
41 |
+
value: 0.688144336139226
|
42 |
name: Metric
|
43 |
+
license: mit
|
44 |
+
language:
|
45 |
+
- en
|
46 |
---
|
47 |
|
48 |
+
# Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses
|
49 |
|
50 |
+
The official trained models for **"Computational Analysis of Communicative Acts for Understanding Crisis News Comment Discourses"**.
|
51 |
|
52 |
+
This model is based on **SetFit** ([SetFit: Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)) and uses the **sentence-transformers/paraphrase-mpnet-base-v2** pretrained model. It has been fine-tuned on our **crisis narratives dataset**.
|
53 |
|
54 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
### Model Information
|
|
|
57 |
|
58 |
+
- **Architecture:** SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
59 |
+
- **Task:** Single-label classification for communicative act actions
|
60 |
+
- **Classes:**
|
61 |
+
- `informing statement`
|
62 |
+
- `challenge`
|
63 |
+
- `rejection`
|
64 |
+
- `appreciation`
|
65 |
+
- `request`
|
66 |
+
- `question`
|
67 |
+
- `acceptance`
|
68 |
+
- `apology`
|
69 |
|
70 |
+
---
|
|
|
|
|
|
|
71 |
|
72 |
+
### How to Use the Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
You can find the code to fine-tune this model and detailed instructions in the following GitHub repository:
|
75 |
+
[Acts in Crisis Narratives - SetFit Fine-Tuning Notebook](https://github.com/Aalto-CRAI-CIS/Acts-in-crisis-narratives/blob/main/few_shot_learning/SetFit.ipynb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
#### Steps to Load and Use the Model:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
1. Install the SetFit library:
|
80 |
+
```bash
|
81 |
+
pip install setfit
|
82 |
+
```
|
83 |
+
|
84 |
+
2. Load the model and run inference:
|
85 |
+
```python
|
86 |
+
from setfit import SetFitModel
|
87 |
|
88 |
+
# Download from the 🤗 Hub
|
89 |
+
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-single_label")
|
90 |
+
|
91 |
+
# Run inference
|
92 |
+
preds = model("I'm sorry.")
|
93 |
+
```
|
94 |
|
95 |
+
For detailed instructions, refer to the GitHub repository linked above.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
---
|
|
|
98 |
|
99 |
+
### Citation
|
|
|
100 |
|
101 |
+
If you use this model in your work, please cite:
|
|
|
102 |
|
103 |
+
##### TO BE ADDED.
|
|
|
104 |
|
105 |
+
### Questions or Feedback?
|
|
|
106 |
|
107 |
+
For questions or feedback, please reach out via our [contact form](mailto:[email protected]).
|
|