--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - metric widget: - text: A combined 20 million people per year die of smoking and hunger, so authorities can't seem to feed people and they allow you to buy cigarettes but we are facing another lockdown for a virus that has a 99.5% survival rate!!! THINK PEOPLE. LOOK AT IT LOGICALLY WITH YOUR OWN EYES. - text: Scientists do not agree on the consequences of climate change, nor is there any consensus on that subject. The predictions on that from are just ascientific speculation. Bring on the warming." - text: If Tam is our "top doctor"....I am going back to leaches and voodoo...just as much science in that as the crap she spouts - text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions\ \ and just a good actor." - text: my dad had huge ones..so they may be real.. pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.4482758620689655 name: Metric --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 5 | | | 0 | | | 7 | | | 2 | | | 3 | | | 6 | | | 4 | | | 1 | | | 8 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.4483 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-single_label") # Run inference preds = model("my dad had huge ones..so they may be real..") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:-----| | Word count | 1 | 25.8891 | 1681 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 156 | | 1 | 81 | | 2 | 64 | | 3 | 52 | | 4 | 46 | | 5 | 63 | | 6 | 35 | | 7 | 37 | | 8 | 7 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (1.752e-05, 1.752e-05) - head_learning_rate: 1.752e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 30 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3913 | - | | 0.0185 | 50 | 0.3901 | - | | 0.0370 | 100 | 0.219 | - | | 0.0555 | 150 | 0.2308 | - | | 0.0739 | 200 | 0.2161 | - | | 0.0924 | 250 | 0.2 | - | | 0.1109 | 300 | 0.2436 | - | | 0.1294 | 350 | 0.2219 | - | | 0.1479 | 400 | 0.1266 | - | | 0.1664 | 450 | 0.1043 | - | | 0.1848 | 500 | 0.076 | - | | 0.2033 | 550 | 0.1331 | - | | 0.2218 | 600 | 0.0858 | - | | 0.2403 | 650 | 0.0355 | - | | 0.2588 | 700 | 0.0475 | - | | 0.2773 | 750 | 0.066 | - | | 0.2957 | 800 | 0.0667 | - | | 0.3142 | 850 | 0.0082 | - | | 0.3327 | 900 | 0.0658 | - | | 0.3512 | 950 | 0.0042 | - | | 0.3697 | 1000 | 0.095 | - | | 0.3882 | 1050 | 0.0598 | - | | 0.4067 | 1100 | 0.0037 | - | | 0.4251 | 1150 | 0.0155 | - | | 0.4436 | 1200 | 0.0028 | - | | 0.4621 | 1250 | 0.0025 | - | | 0.4806 | 1300 | 0.0542 | - | | 0.4991 | 1350 | 0.001 | - | | 0.5176 | 1400 | 0.0056 | - | | 0.5360 | 1450 | 0.001 | - | | 0.5545 | 1500 | 0.0011 | - | | 0.5730 | 1550 | 0.0007 | - | | 0.5915 | 1600 | 0.0014 | - | | 0.6100 | 1650 | 0.0018 | - | | 0.6285 | 1700 | 0.0012 | - | | 0.6470 | 1750 | 0.0005 | - | | 0.6654 | 1800 | 0.0006 | - | | 0.6839 | 1850 | 0.0003 | - | | 0.7024 | 1900 | 0.0002 | - | | 0.7209 | 1950 | 0.0044 | - | | 0.7394 | 2000 | 0.003 | - | | 0.7579 | 2050 | 0.0005 | - | | 0.7763 | 2100 | 0.0006 | - | | 0.7948 | 2150 | 0.0005 | - | | 0.8133 | 2200 | 0.0002 | - | | 0.8318 | 2250 | 0.0003 | - | | 0.8503 | 2300 | 0.0003 | - | | 0.8688 | 2350 | 0.0006 | - | | 0.8872 | 2400 | 0.0002 | - | | 0.9057 | 2450 | 0.002 | - | | 0.9242 | 2500 | 0.0003 | - | | 0.9427 | 2550 | 0.0002 | - | | 0.9612 | 2600 | 0.0009 | - | | 0.9797 | 2650 | 0.0001 | - | | 0.9982 | 2700 | 0.0002 | - | | 1.0166 | 2750 | 0.0003 | - | | 1.0351 | 2800 | 0.0003 | - | | 1.0536 | 2850 | 0.0004 | - | | 1.0721 | 2900 | 0.0003 | - | | 1.0906 | 2950 | 0.0004 | - | | 1.1091 | 3000 | 0.0003 | - | | 1.1275 | 3050 | 0.0001 | - | | 1.1460 | 3100 | 0.0002 | - | | 1.1645 | 3150 | 0.0005 | - | | 1.1830 | 3200 | 0.0004 | - | | 1.2015 | 3250 | 0.0003 | - | | 1.2200 | 3300 | 0.0003 | - | | 1.2384 | 3350 | 0.0004 | - | | 1.2569 | 3400 | 0.0003 | - | | 1.2754 | 3450 | 0.0002 | - | | 1.2939 | 3500 | 0.0002 | - | | 1.3124 | 3550 | 0.0003 | - | | 1.3309 | 3600 | 0.0005 | - | | 1.3494 | 3650 | 0.0002 | - | | 1.3678 | 3700 | 0.0003 | - | | 1.3863 | 3750 | 0.0002 | - | | 1.4048 | 3800 | 0.0001 | - | | 1.4233 | 3850 | 0.0001 | - | | 1.4418 | 3900 | 0.0004 | - | | 1.4603 | 3950 | 0.0001 | - | | 1.4787 | 4000 | 0.0002 | - | | 1.4972 | 4050 | 0.001 | - | | 1.5157 | 4100 | 0.0002 | - | | 1.5342 | 4150 | 0.0003 | - | | 1.5527 | 4200 | 0.0001 | - | | 1.5712 | 4250 | 0.0001 | - | | 1.5896 | 4300 | 0.0002 | - | | 1.6081 | 4350 | 0.0005 | - | | 1.6266 | 4400 | 0.0001 | - | | 1.6451 | 4450 | 0.0002 | - | | 1.6636 | 4500 | 0.0001 | - | | 1.6821 | 4550 | 0.0001 | - | | 1.7006 | 4600 | 0.0001 | - | | 1.7190 | 4650 | 0.0001 | - | | 1.7375 | 4700 | 0.0001 | - | | 1.7560 | 4750 | 0.0002 | - | | 1.7745 | 4800 | 0.0001 | - | | 1.7930 | 4850 | 0.0001 | - | | 1.8115 | 4900 | 0.0001 | - | | 1.8299 | 4950 | 0.0 | - | | 1.8484 | 5000 | 0.0001 | - | | 1.8669 | 5050 | 0.0001 | - | | 1.8854 | 5100 | 0.0001 | - | | 1.9039 | 5150 | 0.0001 | - | | 1.9224 | 5200 | 0.0001 | - | | 1.9409 | 5250 | 0.0001 | - | | 1.9593 | 5300 | 0.0001 | - | | 1.9778 | 5350 | 0.0 | - | | 1.9963 | 5400 | 0.0001 | - | | 2.0148 | 5450 | 0.0001 | - | | 2.0333 | 5500 | 0.0001 | - | | 2.0518 | 5550 | 0.0001 | - | | 2.0702 | 5600 | 0.0002 | - | | 2.0887 | 5650 | 0.0001 | - | | 2.1072 | 5700 | 0.0001 | - | | 2.1257 | 5750 | 0.0 | - | | 2.1442 | 5800 | 0.0001 | - | | 2.1627 | 5850 | 0.0001 | - | | 2.1811 | 5900 | 0.0003 | - | | 2.1996 | 5950 | 0.0001 | - | | 2.2181 | 6000 | 0.0002 | - | | 2.2366 | 6050 | 0.0001 | - | | 2.2551 | 6100 | 0.0001 | - | | 2.2736 | 6150 | 0.0001 | - | | 2.2921 | 6200 | 0.0001 | - | | 2.3105 | 6250 | 0.0001 | - | | 2.3290 | 6300 | 0.0001 | - | | 2.3475 | 6350 | 0.0001 | - | | 2.3660 | 6400 | 0.0001 | - | | 2.3845 | 6450 | 0.0001 | - | | 2.4030 | 6500 | 0.0001 | - | | 2.4214 | 6550 | 0.0001 | - | | 2.4399 | 6600 | 0.0001 | - | | 2.4584 | 6650 | 0.0001 | - | | 2.4769 | 6700 | 0.0001 | - | | 2.4954 | 6750 | 0.0001 | - | | 2.5139 | 6800 | 0.0001 | - | | 2.5323 | 6850 | 0.0002 | - | | 2.5508 | 6900 | 0.0001 | - | | 2.5693 | 6950 | 0.0002 | - | | 2.5878 | 7000 | 0.0001 | - | | 2.6063 | 7050 | 0.0001 | - | | 2.6248 | 7100 | 0.0 | - | | 2.6433 | 7150 | 0.0 | - | | 2.6617 | 7200 | 0.0001 | - | | 2.6802 | 7250 | 0.0001 | - | | 2.6987 | 7300 | 0.0002 | - | | 2.7172 | 7350 | 0.0001 | - | | 2.7357 | 7400 | 0.0001 | - | | 2.7542 | 7450 | 0.0002 | - | | 2.7726 | 7500 | 0.0 | - | | 2.7911 | 7550 | 0.0001 | - | | 2.8096 | 7600 | 0.0005 | - | | 2.8281 | 7650 | 0.0001 | - | | 2.8466 | 7700 | 0.0001 | - | | 2.8651 | 7750 | 0.0001 | - | | 2.8835 | 7800 | 0.0002 | - | | 2.9020 | 7850 | 0.0 | - | | 2.9205 | 7900 | 0.0001 | - | | 2.9390 | 7950 | 0.0 | - | | 2.9575 | 8000 | 0.0001 | - | | 2.9760 | 8050 | 0.0001 | - | | 2.9945 | 8100 | 0.0001 | - | | 0.0002 | 1 | 0.0001 | - | | 0.0108 | 50 | 0.0003 | - | | 0.0216 | 100 | 0.0001 | - | | 0.0323 | 150 | 0.0004 | - | | 0.0431 | 200 | 0.0002 | - | | 0.0539 | 250 | 0.0006 | - | | 0.0647 | 300 | 0.0001 | - | | 0.0755 | 350 | 0.0002 | - | | 0.0862 | 400 | 0.0051 | - | | 0.0970 | 450 | 0.1866 | - | | 0.1078 | 500 | 0.11 | - | | 0.1186 | 550 | 0.1214 | - | | 0.1294 | 600 | 0.2073 | - | | 0.1401 | 650 | 0.019 | - | | 0.1509 | 700 | 0.0762 | - | | 0.1617 | 750 | 0.1901 | - | | 0.1725 | 800 | 0.1234 | - | | 0.1833 | 850 | 0.0601 | - | | 0.1940 | 900 | 0.4192 | - | | 0.2048 | 950 | 0.0397 | - | | 0.2156 | 1000 | 0.111 | - | | 0.2264 | 1050 | 0.055 | - | | 0.2372 | 1100 | 0.0146 | - | | 0.2480 | 1150 | 0.1277 | - | | 0.2587 | 1200 | 0.0236 | - | | 0.2695 | 1250 | 0.0087 | - | | 0.2803 | 1300 | 0.2315 | - | | 0.2911 | 1350 | 0.3547 | - | | 0.3019 | 1400 | 0.5957 | - | | 0.3126 | 1450 | 0.2253 | - | | 0.3234 | 1500 | 0.2068 | - | | 0.3342 | 1550 | 0.3203 | - | | 0.3450 | 1600 | 0.5608 | - | | 0.3558 | 1650 | 0.3014 | - | | 0.3665 | 1700 | 0.3287 | - | | 0.3773 | 1750 | 0.3206 | - | | 0.3881 | 1800 | 0.4245 | - | | 0.3989 | 1850 | 0.2641 | - | | 0.4097 | 1900 | 0.4057 | - | | 0.4204 | 1950 | 0.3891 | - | | 0.4312 | 2000 | 0.3688 | - | | 0.4420 | 2050 | 0.4642 | - | | 0.4528 | 2100 | 0.3684 | - | | 0.4636 | 2150 | 0.246 | - | | 0.4743 | 2200 | 0.177 | - | | 0.4851 | 2250 | 0.3416 | - | | 0.4959 | 2300 | 0.3931 | - | | 0.5067 | 2350 | 0.2617 | - | | 0.5175 | 2400 | 0.5679 | - | | 0.5282 | 2450 | 0.3879 | - | | 0.5390 | 2500 | 0.3916 | - | | 0.5498 | 2550 | 0.3657 | - | | 0.5606 | 2600 | 0.3382 | - | | 0.5714 | 2650 | 0.4621 | - | | 0.5821 | 2700 | 0.3235 | - | | 0.5929 | 2750 | 0.2986 | - | | 0.6037 | 2800 | 0.3001 | - | | 0.6145 | 2850 | 0.2309 | - | | 0.6253 | 2900 | 0.1802 | - | | 0.6361 | 2950 | 0.2648 | - | | 0.6468 | 3000 | 0.2875 | - | | 0.6576 | 3050 | 0.2888 | - | | 0.6684 | 3100 | 0.2563 | - | | 0.6792 | 3150 | 0.3129 | - | | 0.6900 | 3200 | 0.2229 | - | | 0.7007 | 3250 | 0.2462 | - | | 0.7115 | 3300 | 0.283 | - | | 0.7223 | 3350 | 0.3622 | - | | 0.7331 | 3400 | 0.3428 | - | | 0.7439 | 3450 | 0.4274 | - | | 0.7546 | 3500 | 0.4131 | - | | 0.7654 | 3550 | 0.2123 | - | | 0.7762 | 3600 | 0.326 | - | | 0.7870 | 3650 | 0.2488 | - | | 0.7978 | 3700 | 0.4046 | - | | 0.8085 | 3750 | 0.2664 | - | | 0.8193 | 3800 | 0.2426 | - | | 0.8301 | 3850 | 0.3534 | - | | 0.8409 | 3900 | 0.2753 | - | | 0.8517 | 3950 | 0.3177 | - | | 0.8624 | 4000 | 0.222 | - | | 0.8732 | 4050 | 0.3942 | - | | 0.8840 | 4100 | 0.1932 | - | | 0.8948 | 4150 | 0.2727 | - | | 0.9056 | 4200 | 0.2713 | - | | 0.9163 | 4250 | 0.3888 | - | | 0.9271 | 4300 | 0.3155 | - | | 0.9379 | 4350 | 0.2727 | - | | 0.9487 | 4400 | 0.4148 | - | | 0.9595 | 4450 | 0.297 | - | | 0.9702 | 4500 | 0.2154 | - | | 0.9810 | 4550 | 0.2617 | - | | 0.9918 | 4600 | 0.255 | - | | 1.0026 | 4650 | 0.395 | - | | 1.0134 | 4700 | 0.4104 | - | | 1.0241 | 4750 | 0.2675 | - | | 1.0349 | 4800 | 0.2458 | - | | 1.0457 | 4850 | 0.316 | - | | 1.0565 | 4900 | 0.3786 | - | | 1.0673 | 4950 | 0.2206 | - | | 1.0781 | 5000 | 0.3946 | - | | 1.0888 | 5050 | 0.2178 | - | | 1.0996 | 5100 | 0.302 | - | | 1.1104 | 5150 | 0.2449 | - | | 1.1212 | 5200 | 0.2644 | - | | 1.1320 | 5250 | 0.3111 | - | | 1.1427 | 5300 | 0.3953 | - | | 1.1535 | 5350 | 0.2064 | - | | 1.1643 | 5400 | 0.3149 | - | | 1.1751 | 5450 | 0.2073 | - | | 1.1859 | 5500 | 0.3759 | - | | 1.1966 | 5550 | 0.2044 | - | | 1.2074 | 5600 | 0.2034 | - | | 1.2182 | 5650 | 0.2325 | - | | 1.2290 | 5700 | 0.2393 | - | | 1.2398 | 5750 | 0.3568 | - | | 1.2505 | 5800 | 0.2234 | - | | 1.2613 | 5850 | 0.2428 | - | | 1.2721 | 5900 | 0.3561 | - | | 1.2829 | 5950 | 0.1885 | - | | 1.2937 | 6000 | 0.3153 | - | | 1.3044 | 6050 | 0.2288 | - | | 1.3152 | 6100 | 0.2852 | - | | 1.3260 | 6150 | 0.289 | - | | 1.3368 | 6200 | 0.3719 | - | | 1.3476 | 6250 | 0.1921 | - | | 1.3583 | 6300 | 0.266 | - | | 1.3691 | 6350 | 0.2743 | - | | 1.3799 | 6400 | 0.3637 | - | | 1.3907 | 6450 | 0.3849 | - | | 1.4015 | 6500 | 0.1926 | - | | 1.4122 | 6550 | 0.3594 | - | | 1.4230 | 6600 | 0.3263 | - | | 1.4338 | 6650 | 0.4645 | - | | 1.4446 | 6700 | 0.2304 | - | | 1.4554 | 6750 | 0.2337 | - | | 1.4661 | 6800 | 0.2812 | - | | 1.4769 | 6850 | 0.2975 | - | | 1.4877 | 6900 | 0.4025 | - | | 1.4985 | 6950 | 0.1897 | - | | 1.5093 | 7000 | 0.4523 | - | | 1.5201 | 7050 | 0.1906 | - | | 1.5308 | 7100 | 0.2756 | - | | 1.5416 | 7150 | 0.3313 | - | | 1.5524 | 7200 | 0.2999 | - | | 1.5632 | 7250 | 0.2517 | - | | 1.5740 | 7300 | 0.2421 | - | | 1.5847 | 7350 | 0.2864 | - | | 1.5955 | 7400 | 0.3119 | - | | 1.6063 | 7450 | 0.2178 | - | | 1.6171 | 7500 | 0.4006 | - | | 1.6279 | 7550 | 0.2744 | - | | 1.6386 | 7600 | 0.2306 | - | | 1.6494 | 7650 | 0.2772 | - | | 1.6602 | 7700 | 0.2103 | - | | 1.6710 | 7750 | 0.3151 | - | | 1.6818 | 7800 | 0.3457 | - | | 1.6925 | 7850 | 0.2146 | - | | 1.7033 | 7900 | 0.2105 | - | | 1.7141 | 7950 | 0.1986 | - | | 1.7249 | 8000 | 0.2604 | - | | 1.7357 | 8050 | 0.1683 | - | | 1.7464 | 8100 | 0.2814 | - | | 1.7572 | 8150 | 0.2088 | - | | 1.7680 | 8200 | 0.3935 | - | | 1.7788 | 8250 | 0.3019 | - | | 1.7896 | 8300 | 0.3094 | - | | 1.8003 | 8350 | 0.2024 | - | | 1.8111 | 8400 | 0.2901 | - | | 1.8219 | 8450 | 0.2392 | - | | 1.8327 | 8500 | 0.3296 | - | | 1.8435 | 8550 | 0.2818 | - | | 1.8542 | 8600 | 0.2898 | - | | 1.8650 | 8650 | 0.2598 | - | | 1.8758 | 8700 | 0.3531 | - | | 1.8866 | 8750 | 0.2989 | - | | 1.8974 | 8800 | 0.2356 | - | | 1.9082 | 8850 | 0.3657 | - | | 1.9189 | 8900 | 0.3765 | - | | 1.9297 | 8950 | 0.2668 | - | | 1.9405 | 9000 | 0.4219 | - | | 1.9513 | 9050 | 0.3362 | - | | 1.9621 | 9100 | 0.325 | - | | 1.9728 | 9150 | 0.267 | - | | 1.9836 | 9200 | 0.2945 | - | | 1.9944 | 9250 | 0.2129 | - | | 2.0052 | 9300 | 0.351 | - | | 2.0160 | 9350 | 0.4508 | - | | 2.0267 | 9400 | 0.2375 | - | | 2.0375 | 9450 | 0.2669 | - | | 2.0483 | 9500 | 0.232 | - | | 2.0591 | 9550 | 0.2469 | - | | 2.0699 | 9600 | 0.2644 | - | | 2.0806 | 9650 | 0.239 | - | | 2.0914 | 9700 | 0.3189 | - | | 2.1022 | 9750 | 0.2711 | - | | 2.1130 | 9800 | 0.2627 | - | | 2.1238 | 9850 | 0.2213 | - | | 2.1345 | 9900 | 0.2311 | - | | 2.1453 | 9950 | 0.3009 | - | | 2.1561 | 10000 | 0.2068 | - | | 2.1669 | 10050 | 0.3129 | - | | 2.1777 | 10100 | 0.2901 | - | | 2.1884 | 10150 | 0.2743 | - | | 2.1992 | 10200 | 0.2809 | - | | 2.2100 | 10250 | 0.249 | - | | 2.2208 | 10300 | 0.3017 | - | | 2.2316 | 10350 | 0.4271 | - | | 2.2423 | 10400 | 0.2551 | - | | 2.2531 | 10450 | 0.1911 | - | | 2.2639 | 10500 | 0.3297 | - | | 2.2747 | 10550 | 0.3251 | - | | 2.2855 | 10600 | 0.267 | - | | 2.2962 | 10650 | 0.3022 | - | | 2.3070 | 10700 | 0.2353 | - | | 2.3178 | 10750 | 0.3533 | - | | 2.3286 | 10800 | 0.216 | - | | 2.3394 | 10850 | 0.3003 | - | | 2.3502 | 10900 | 0.2943 | - | | 2.3609 | 10950 | 0.2959 | - | | 2.3717 | 11000 | 0.3203 | - | | 2.3825 | 11050 | 0.2962 | - | | 2.3933 | 11100 | 0.2475 | - | | 2.4041 | 11150 | 0.2933 | - | | 2.4148 | 11200 | 0.2903 | - | | 2.4256 | 11250 | 0.328 | - | | 2.4364 | 11300 | 0.1893 | - | | 2.4472 | 11350 | 0.2367 | - | | 2.4580 | 11400 | 0.2473 | - | | 2.4687 | 11450 | 0.2751 | - | | 2.4795 | 11500 | 0.2708 | - | | 2.4903 | 11550 | 0.3104 | - | | 2.5011 | 11600 | 0.2791 | - | | 2.5119 | 11650 | 0.3181 | - | | 2.5226 | 11700 | 0.2411 | - | | 2.5334 | 11750 | 0.3114 | - | | 2.5442 | 11800 | 0.2759 | - | | 2.5550 | 11850 | 0.3006 | - | | 2.5658 | 11900 | 0.2647 | - | | 2.5765 | 11950 | 0.225 | - | | 2.5873 | 12000 | 0.2904 | - | | 2.5981 | 12050 | 0.2776 | - | | 2.6089 | 12100 | 0.3102 | - | | 2.6197 | 12150 | 0.2499 | - | | 2.6304 | 12200 | 0.2763 | - | | 2.6412 | 12250 | 0.2645 | - | | 2.6520 | 12300 | 0.3281 | - | | 2.6628 | 12350 | 0.1793 | - | | 2.6736 | 12400 | 0.3369 | - | | 2.6843 | 12450 | 0.2598 | - | | 2.6951 | 12500 | 0.3334 | - | | 2.7059 | 12550 | 0.2935 | - | | 2.7167 | 12600 | 0.4243 | - | | 2.7275 | 12650 | 0.2212 | - | | 2.7382 | 12700 | 0.2187 | - | | 2.7490 | 12750 | 0.3004 | - | | 2.7598 | 12800 | 0.4244 | - | | 2.7706 | 12850 | 0.2242 | - | | 2.7814 | 12900 | 0.3072 | - | | 2.7922 | 12950 | 0.3468 | - | | 2.8029 | 13000 | 0.2112 | - | | 2.8137 | 13050 | 0.2935 | - | | 2.8245 | 13100 | 0.2618 | - | | 2.8353 | 13150 | 0.266 | - | | 2.8461 | 13200 | 0.2458 | - | | 2.8568 | 13250 | 0.2244 | - | | 2.8676 | 13300 | 0.2764 | - | | 2.8784 | 13350 | 0.2262 | - | | 2.8892 | 13400 | 0.2232 | - | | 2.9000 | 13450 | 0.2353 | - | | 2.9107 | 13500 | 0.3661 | - | | 2.9215 | 13550 | 0.1905 | - | | 2.9323 | 13600 | 0.3493 | - | | 2.9431 | 13650 | 0.2481 | - | | 2.9539 | 13700 | 0.23 | - | | 2.9646 | 13750 | 0.2407 | - | | 2.9754 | 13800 | 0.2673 | - | | 2.9862 | 13850 | 0.2091 | - | | 2.9970 | 13900 | 0.2471 | - | | 0.0004 | 1 | 0.287 | - | | 0.0185 | 50 | 0.285 | - | | 0.0370 | 100 | 0.233 | - | | 0.0555 | 150 | 0.2874 | - | | 0.0739 | 200 | 0.2599 | - | | 0.0924 | 250 | 0.284 | - | | 0.1109 | 300 | 0.3046 | - | | 0.1294 | 350 | 0.2751 | - | | 0.1479 | 400 | 0.2343 | - | | 0.1664 | 450 | 0.2809 | - | | 0.1848 | 500 | 0.2178 | - | | 0.2033 | 550 | 0.2654 | - | | 0.2218 | 600 | 0.2673 | - | | 0.2403 | 650 | 0.2628 | - | | 0.2588 | 700 | 0.279 | - | | 0.2773 | 750 | 0.2448 | - | | 0.2957 | 800 | 0.2502 | - | | 0.3142 | 850 | 0.3343 | - | | 0.3327 | 900 | 0.2669 | - | | 0.3512 | 950 | 0.2714 | - | | 0.3697 | 1000 | 0.3234 | - | | 0.3882 | 1050 | 0.2892 | - | | 0.4067 | 1100 | 0.2437 | - | | 0.4251 | 1150 | 0.2409 | - | | 0.4436 | 1200 | 0.2402 | - | | 0.4621 | 1250 | 0.2479 | - | | 0.4806 | 1300 | 0.2323 | - | | 0.4991 | 1350 | 0.2474 | - | | 0.5176 | 1400 | 0.319 | - | | 0.5360 | 1450 | 0.3341 | - | | 0.5545 | 1500 | 0.3162 | - | | 0.5730 | 1550 | 0.2973 | - | | 0.5915 | 1600 | 0.2975 | - | | 0.6100 | 1650 | 0.2828 | - | | 0.6285 | 1700 | 0.2625 | - | | 0.6470 | 1750 | 0.2769 | - | | 0.6654 | 1800 | 0.271 | - | | 0.6839 | 1850 | 0.2538 | - | | 0.7024 | 1900 | 0.1979 | - | | 0.7209 | 1950 | 0.3117 | - | | 0.7394 | 2000 | 0.2247 | - | | 0.7579 | 2050 | 0.3248 | - | | 0.7763 | 2100 | 0.2515 | - | | 0.7948 | 2150 | 0.2877 | - | | 0.8133 | 2200 | 0.3182 | - | | 0.8318 | 2250 | 0.2772 | - | | 0.8503 | 2300 | 0.2423 | - | | 0.8688 | 2350 | 0.2638 | - | | 0.8872 | 2400 | 0.226 | - | | 0.9057 | 2450 | 0.306 | - | | 0.9242 | 2500 | 0.2072 | - | | 0.9427 | 2550 | 0.2434 | - | | 0.9612 | 2600 | 0.2712 | - | | 0.9797 | 2650 | 0.3225 | - | | 0.9982 | 2700 | 0.2534 | - | | 1.0166 | 2750 | 0.2364 | - | | 1.0351 | 2800 | 0.241 | - | | 1.0536 | 2850 | 0.2165 | - | | 1.0721 | 2900 | 0.2719 | - | | 1.0906 | 2950 | 0.2694 | - | | 1.1091 | 3000 | 0.2562 | - | | 1.1275 | 3050 | 0.2994 | - | | 1.1460 | 3100 | 0.2477 | - | | 1.1645 | 3150 | 0.231 | - | | 1.1830 | 3200 | 0.2751 | - | | 1.2015 | 3250 | 0.2543 | - | | 1.2200 | 3300 | 0.2468 | - | | 1.2384 | 3350 | 0.217 | - | | 1.2569 | 3400 | 0.2664 | - | | 1.2754 | 3450 | 0.2556 | - | | 1.2939 | 3500 | 0.2334 | - | | 1.3124 | 3550 | 0.2396 | - | | 1.3309 | 3600 | 0.2383 | - | | 1.3494 | 3650 | 0.2635 | - | | 1.3678 | 3700 | 0.2652 | - | | 1.3863 | 3750 | 0.2573 | - | | 1.4048 | 3800 | 0.2211 | - | | 1.4233 | 3850 | 0.2244 | - | | 1.4418 | 3900 | 0.2399 | - | | 1.4603 | 3950 | 0.2587 | - | | 1.4787 | 4000 | 0.304 | - | | 1.4972 | 4050 | 0.287 | - | | 1.5157 | 4100 | 0.2667 | - | | 1.5342 | 4150 | 0.3251 | - | | 1.5527 | 4200 | 0.2641 | - | | 1.5712 | 4250 | 0.2576 | - | | 1.5896 | 4300 | 0.3057 | - | | 1.6081 | 4350 | 0.2145 | - | | 1.6266 | 4400 | 0.2665 | - | | 1.6451 | 4450 | 0.2756 | - | | 1.6636 | 4500 | 0.3089 | - | | 1.6821 | 4550 | 0.3013 | - | | 1.7006 | 4600 | 0.2337 | - | | 1.7190 | 4650 | 0.2538 | - | | 1.7375 | 4700 | 0.2428 | - | | 1.7560 | 4750 | 0.2694 | - | | 1.7745 | 4800 | 0.2367 | - | | 1.7930 | 4850 | 0.2656 | - | | 1.8115 | 4900 | 0.2405 | - | | 1.8299 | 4950 | 0.2381 | - | | 1.8484 | 5000 | 0.2363 | - | | 1.8669 | 5050 | 0.2395 | - | | 1.8854 | 5100 | 0.3183 | - | | 1.9039 | 5150 | 0.2918 | - | | 1.9224 | 5200 | 0.2985 | - | | 1.9409 | 5250 | 0.3331 | - | | 1.9593 | 5300 | 0.2716 | - | | 1.9778 | 5350 | 0.2529 | - | | 1.9963 | 5400 | 0.2557 | - | | 2.0148 | 5450 | 0.2618 | - | | 2.0333 | 5500 | 0.296 | - | | 2.0518 | 5550 | 0.2866 | - | | 2.0702 | 5600 | 0.2445 | - | | 2.0887 | 5650 | 0.2464 | - | | 2.1072 | 5700 | 0.2247 | - | | 2.1257 | 5750 | 0.2906 | - | | 2.1442 | 5800 | 0.2413 | - | | 2.1627 | 5850 | 0.2805 | - | | 2.1811 | 5900 | 0.2777 | - | | 2.1996 | 5950 | 0.2151 | - | | 2.2181 | 6000 | 0.2938 | - | | 2.2366 | 6050 | 0.2569 | - | | 2.2551 | 6100 | 0.2523 | - | | 2.2736 | 6150 | 0.2649 | - | | 2.2921 | 6200 | 0.2265 | - | | 2.3105 | 6250 | 0.216 | - | | 2.3290 | 6300 | 0.3309 | - | | 2.3475 | 6350 | 0.2815 | - | | 2.3660 | 6400 | 0.2566 | - | | 2.3845 | 6450 | 0.237 | - | | 2.4030 | 6500 | 0.2165 | - | | 2.4214 | 6550 | 0.2975 | - | | 2.4399 | 6600 | 0.2402 | - | | 2.4584 | 6650 | 0.2943 | - | | 2.4769 | 6700 | 0.2522 | - | | 2.4954 | 6750 | 0.2473 | - | | 2.5139 | 6800 | 0.2652 | - | | 2.5323 | 6850 | 0.244 | - | | 2.5508 | 6900 | 0.2488 | - | | 2.5693 | 6950 | 0.2726 | - | | 2.5878 | 7000 | 0.2282 | - | | 2.6063 | 7050 | 0.2386 | - | | 2.6248 | 7100 | 0.3269 | - | | 2.6433 | 7150 | 0.2401 | - | | 2.6617 | 7200 | 0.284 | - | | 2.6802 | 7250 | 0.3263 | - | | 2.6987 | 7300 | 0.3019 | - | | 2.7172 | 7350 | 0.2364 | - | | 2.7357 | 7400 | 0.2219 | - | | 2.7542 | 7450 | 0.2798 | - | | 2.7726 | 7500 | 0.2605 | - | | 2.7911 | 7550 | 0.2958 | - | | 2.8096 | 7600 | 0.2028 | - | | 2.8281 | 7650 | 0.2577 | - | | 2.8466 | 7700 | 0.2686 | - | | 2.8651 | 7750 | 0.2894 | - | | 2.8835 | 7800 | 0.3136 | - | | 2.9020 | 7850 | 0.2417 | - | | 2.9205 | 7900 | 0.276 | - | | 2.9390 | 7950 | 0.2608 | - | | 2.9575 | 8000 | 0.2545 | - | | 2.9760 | 8050 | 0.2539 | - | | 2.9945 | 8100 | 0.1995 | - | ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.0 - PyTorch: 2.1.0+cu121 - Datasets: 2.14.6 - Tokenizers: 0.14.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```