CrispyAlbumArt
commited on
Commit
•
6dd533e
1
Parent(s):
b1021bb
1. Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -191.27 +/- 66.80
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe06c059170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe06c059200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe06c059290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe06c059320>", "_build": "<function ActorCriticPolicy._build at 0x7fe06c0593b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe06c059440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe06c0594d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe06c059560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe06c0595f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe06c059680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe06c059710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe06c09fab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652354784.589936, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOv9L0gBrE+YuiWvpJlr75T/C+8lr4xvgAAAAAAAAAAcx7cPqPsij5Pmg+9Xf65vpbkkL5qlIS+AAAAAAAAAACaKwS/Z87pvUw3mj0pkeM85x1ku0e/FD4AAIA/AACAP0x3EL+rdzC+H6UAu+nZ7DiiQBI+CIogOQAAgD8AAIA/My8Svae8YT9snUI+wjjKvpAmIr5o3Ts+AAAAAAAAAADGbR0//DLrPr50ZD4KbPG+Xc0Zvhxmi74AAAAAAAAAAPMEgj3Drmo7GIYPPQQ4DTuVFEa70idhvAAAAAAAAAAAM5LnvEgdsrr6E8s8ygQbvSDmmjsdTwc+AACAPwAAAABqqOA+3BrTvboMbjzhwp48z2gPPsCCdL0AAIA/AACAP6BiB771Bes+oqnQPbU/g76HA7C9EAj+PQAAAAAAAAAAM8MFOxRutTl68Q09G3C1PJpTNztdcXE8AACAPwAAgD9z/q8+MSosvQvfWbz/T4+6CWE3voXATLwAAIA/AACAP2QjGr8E6dU+WRlGPZpRq77P5Wq+eROuvQAAAAAAAAAA07uyvhE6pD5yizk+nQXHvgFtA77RyCY+AAAAAAAAAABNALs9jwMUP/WQCz5OzAC/yGIrvktECT0AAAAAAAAAAIDdPL2ugc66FWmkvZW6M73BPIg7DzodPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCB8KNFaLMCUhpRSlIwBbJRLwowBdJRHQFoppRGc4HZ1fZQoaAZoCWgPQwjObcK9MvtPwJSGlFKUaBVLpWgWR0BaKbCm/FisdX2UKGgGaAloD0MI6j9rfvyDQsCUhpRSlGgVS65oFkdAWjNqBVdX1nV9lChoBmgJaA9DCJPgDWlUdETAlIaUUpRoFUuuaBZHQFo7RArxy4p1fZQoaAZoCWgPQwjye5v+7IcDQJSGlFKUaBVLv2gWR0BaTGDHwPRRdX2UKGgGaAloD0MIrUuN0M/YRECUhpRSlGgVS7ZoFkdAWlGOXE61cHV9lChoBmgJaA9DCGN7Lei9wUTAlIaUUpRoFUvBaBZHQFpZ02LpA2R1fZQoaAZoCWgPQwh6jV2ielcwQJSGlFKUaBVN6ANoFkdAWmCEkB0ZFXV9lChoBmgJaA9DCPsCeuHOh0FAlIaUUpRoFUuIaBZHQFqOwX668QJ1fZQoaAZoCWgPQwht/l915AgtQJSGlFKUaBVLfmgWR0BamWweNkvsdX2UKGgGaAloD0MI/dgkP+IfQECUhpRSlGgVS4toFkdAWpseS0Sh8XV9lChoBmgJaA9DCKcgPxu5KjLAlIaUUpRoFUthaBZHQFqpqLCN0eV1fZQoaAZoCWgPQwi5wVCHFU4RQJSGlFKUaBVLsGgWR0BarXYL9deIdX2UKGgGaAloD0MIG2MnvAQzPkCUhpRSlGgVS4BoFkdAWru1eBxxUHV9lChoBmgJaA9DCGE3bFuUI1fAlIaUUpRoFUvQaBZHQFrCNPP9kz51fZQoaAZoCWgPQwjpfeNrzylSQJSGlFKUaBVN6ANoFkdAWupjiGWUr3V9lChoBmgJaA9DCIXsvI3NbFrAlIaUUpRoFUvlaBZHQFsD7U5MlC11fZQoaAZoCWgPQwgE4nX9gt32v5SGlFKUaBVLjmgWR0BbBa4x1xKhdX2UKGgGaAloD0MIij+KOnOqVsCUhpRSlGgVTUQBaBZHQFsRdEsrd311fZQoaAZoCWgPQwiAZDp0ej4vwJSGlFKUaBVLnmgWR0BcOfvv0AcUdX2UKGgGaAloD0MIO29jsyNdMMCUhpRSlGgVS51oFkdAXEh19v0h/3V9lChoBmgJaA9DCOnTKvpDj01AlIaUUpRoFUufaBZHQFxcqOcUdrB1fZQoaAZoCWgPQwiARBMoYo9OQJSGlFKUaBVN6ANoFkdAXGf1uivgWXV9lChoBmgJaA9DCBQEj29vw2TAlIaUUpRoFUvVaBZHQFx6GMXJo011fZQoaAZoCWgPQwjMXUvIBxUowJSGlFKUaBVLlmgWR0BcfrmdRR/FdX2UKGgGaAloD0MILCy4H/CQMMCUhpRSlGgVS5FoFkdAXJLqcEvCdnV9lChoBmgJaA9DCFuZ8Ev9vEZAlIaUUpRoFU3oA2gWR0BcqPAGjbi7dX2UKGgGaAloD0MIBoNr7uhjSMCUhpRSlGgVS21oFkdAXLH4wh4dIXV9lChoBmgJaA9DCPc7FAX6hDtAlIaUUpRoFU3oA2gWR0Bcvs1wYLssdX2UKGgGaAloD0MI2CrB4nDGDkCUhpRSlGgVS/poFkdAXOsCih37lHV9lChoBmgJaA9DCHmUSnhCVVDAlIaUUpRoFUv7aBZHQFz5qMFUyYZ1fZQoaAZoCWgPQwhMT1jiAS1JwJSGlFKUaBVL+WgWR0BdBYw7DEWJdX2UKGgGaAloD0MIg4jUtIsrQMCUhpRSlGgVS5xoFkdAXSQNRWLgoHV9lChoBmgJaA9DCHuCxHb3BDBAlIaUUpRoFUvNaBZHQF0rLuQZGax1fZQoaAZoCWgPQwizCTAsf7o+wJSGlFKUaBVL8GgWR0BdLY/eLvTgdX2UKGgGaAloD0MIxF29iowuPECUhpRSlGgVTegDaBZHQF1dTsY2sJZ1fZQoaAZoCWgPQwiCHf8FgqRMwJSGlFKUaBVLpWgWR0BdatKh+OOsdX2UKGgGaAloD0MIiCr8Gd4OQUCUhpRSlGgVS+poFkdAXXAhPj4pMHV9lChoBmgJaA9DCCDT2jS2rybAlIaUUpRoFUu3aBZHQF2Gqaw2VFB1fZQoaAZoCWgPQwg5KGGm7b8hQJSGlFKUaBVLf2gWR0BdjYjSofjkdX2UKGgGaAloD0MIguUIGcgBTMCUhpRSlGgVS5BoFkdAXZRnf2saKnV9lChoBmgJaA9DCLaEfNCzNTHAlIaUUpRoFUvMaBZHQF2kNFBppN91fZQoaAZoCWgPQwiVnBN7aBlVQJSGlFKUaBVN6ANoFkdAXagx8D0UXnV9lChoBmgJaA9DCKyRXWkZ2TtAlIaUUpRoFUuFaBZHQF3QZCv5gw51fZQoaAZoCWgPQwj4xaUqbeEcwJSGlFKUaBVLwmgWR0Bd9KB3A2ycdX2UKGgGaAloD0MIjnbc8LuZO8CUhpRSlGgVS99oFkdAXiSDsdDIBHV9lChoBmgJaA9DCIZWJ2corgNAlIaUUpRoFUueaBZHQF4mQ1rIo3J1fZQoaAZoCWgPQwhl/WZiupASwJSGlFKUaBVLcWgWR0BeMzbi6xxDdX2UKGgGaAloD0MIbeLkfoci7z+UhpRSlGgVS8toFkdAXjW2BreqJnV9lChoBmgJaA9DCEM9fQT+eChAlIaUUpRoFUv1aBZHQF5UtiQT2391fZQoaAZoCWgPQwjhQEgWMNhXwJSGlFKUaBVNFgFoFkdAXoTTWoWHlHV9lChoBmgJaA9DCKXd6GM+zDxAlIaUUpRoFU3oA2gWR0Bek28VYZEVdX2UKGgGaAloD0MIhdGsbB/LUsCUhpRSlGgVTSgBaBZHQF6uaR6nivR1fZQoaAZoCWgPQwjRsYNKXEFLQJSGlFKUaBVLsWgWR0BezHBxgiNbdX2UKGgGaAloD0MIGXEBaJQuGECUhpRSlGgVS61oFkdAXtuCsfaHsXV9lChoBmgJaA9DCJn1YignTE9AlIaUUpRoFU3oA2gWR0Be8Ka1Cw8odX2UKGgGaAloD0MINfEO8KQxOkCUhpRSlGgVS3doFkdAXwVz90ihWnV9lChoBmgJaA9DCKfNOA1RKULAlIaUUpRoFUvzaBZHQF8Nm9xp+MJ1fZQoaAZoCWgPQwjSp1X0h05awJSGlFKUaBVN6ANoFkdAXx4qiGnGbXV9lChoBmgJaA9DCIHoSZnUpGHAlIaUUpRoFU1ZAWgWR0BfOCBClabGdX2UKGgGaAloD0MIPzbJj/htNsCUhpRSlGgVS6FoFkdAX2O9pRGc4HV9lChoBmgJaA9DCInS3uALeFtAlIaUUpRoFU3oA2gWR0BfZprgwXZXdX2UKGgGaAloD0MIjIaMR6mE9T+UhpRSlGgVS5xoFkdAX34MiKR+0HV9lChoBmgJaA9DCGqhZHJqlUbAlIaUUpRoFUv1aBZHQGBVot16mfp1fZQoaAZoCWgPQwgC1xUzwolAwJSGlFKUaBVL0GgWR0BgWd3wCr93dX2UKGgGaAloD0MICCC1iZNrWkCUhpRSlGgVTegDaBZHQGBmb6YVqN91fZQoaAZoCWgPQwiEfqZet6w6QJSGlFKUaBVLmWgWR0BgbVkvsZ5zdX2UKGgGaAloD0MIEd+JWS8dVcCUhpRSlGgVS9VoFkdAYG873fyf+XV9lChoBmgJaA9DCHSbcK/MpzxAlIaUUpRoFU3oA2gWR0BgcwhbGFSLdX2UKGgGaAloD0MIEY3uIHbuJcCUhpRSlGgVTegDaBZHQGCGg0Kqn3t1fZQoaAZoCWgPQwjqB3WRQpkaQJSGlFKUaBVL0mgWR0Bgk4lfJFLGdX2UKGgGaAloD0MIGm1VEtnnEkCUhpRSlGgVS/NoFkdAYKvo/RmbsnV9lChoBmgJaA9DCAaBlUOL7BbAlIaUUpRoFUvUaBZHQGDA9ehPCVN1fZQoaAZoCWgPQwgpeAq5UtBTQJSGlFKUaBVN6ANoFkdAYM+Be5WilHV9lChoBmgJaA9DCLKC34YYPyJAlIaUUpRoFU0AAWgWR0Bg00yzollcdX2UKGgGaAloD0MIE7afjPE8XsCUhpRSlGgVTUkBaBZHQGDgFmFrVON1fZQoaAZoCWgPQwiv6xfshmFDwJSGlFKUaBVL2mgWR0Bg4C2OQyRCdX2UKGgGaAloD0MIhCugUE+nT8CUhpRSlGgVTUQBaBZHQGDqfSQYDT11fZQoaAZoCWgPQwgVNgNckLNBwJSGlFKUaBVLzmgWR0BhB+rKeTV2dX2UKGgGaAloD0MIr3yW58HVIUCUhpRSlGgVS7poFkdAYSmOJ+DvmnV9lChoBmgJaA9DCOXyH9Jv7ztAlIaUUpRoFUuwaBZHQGEz9FnZkCp1fZQoaAZoCWgPQwhNgczOoilbwJSGlFKUaBVNeQFoFkdAYT6sBhhH9XV9lChoBmgJaA9DCA5KmGn7u0zAlIaUUpRoFUvYaBZHQGFJOP/7zkJ1fZQoaAZoCWgPQwhN1qiHaDhBwJSGlFKUaBVL2GgWR0BhVffCQ9zPdX2UKGgGaAloD0MIU3jQ7Lo1UUCUhpRSlGgVTegDaBZHQGFxZOzposZ1fZQoaAZoCWgPQwgCEeLK2R9DwJSGlFKUaBVL3mgWR0BhfuQnx8UmdX2UKGgGaAloD0MIEas/wjBoQUCUhpRSlGgVTegDaBZHQGGFOuzQeFN1fZQoaAZoCWgPQwitMH2vIXxNwJSGlFKUaBVNsAJoFkdAYZJJjDsMRnV9lChoBmgJaA9DCMKE0axsHzBAlIaUUpRoFUvUaBZHQGGcb+tKZlZ1fZQoaAZoCWgPQwifd2NBYVZQQJSGlFKUaBVN6ANoFkdAYZ5wTdtVJnV9lChoBmgJaA9DCBO1NLdCqDvAlIaUUpRoFUvIaBZHQGGw7Rv3rUt1fZQoaAZoCWgPQwhI4XoUrkVAwJSGlFKUaBVLv2gWR0Bht6on8baRdX2UKGgGaAloD0MIofSFkPMwV0CUhpRSlGgVTegDaBZHQGHiQob4rSV1fZQoaAZoCWgPQwgKEAUzpipEQJSGlFKUaBVL62gWR0Bh5TnkkrwwdX2UKGgGaAloD0MIRS+jWG6JOUCUhpRSlGgVS8xoFkdAYeeQ4jrzG3V9lChoBmgJaA9DCMdKzLOSKjVAlIaUUpRoFU3oA2gWR0Bh6pSzgMtsdX2UKGgGaAloD0MIBfuvc9MKOECUhpRSlGgVS6loFkdAYe4lRgqmTHV9lChoBmgJaA9DCG/VdaimjCPAlIaUUpRoFUu2aBZHQGHyD8+A3DN1fZQoaAZoCWgPQwhM32sIjsv2P5SGlFKUaBVL2WgWR0Bh+Jzo2XLNdX2UKGgGaAloD0MI76zddqHlQECUhpRSlGgVTegDaBZHQGINK9oN/fB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:440276169966d5d247f89e94acf245be5dcbe6af3e011f1e40c7b93dc3acc6fb
|
3 |
+
size 143952
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe06c059170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe06c059200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe06c059290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe06c059320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe06c0593b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe06c059440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe06c0594d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe06c059560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe06c0595f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe06c059680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe06c059710>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe06c09fab0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 212992,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652354784.589936,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOv9L0gBrE+YuiWvpJlr75T/C+8lr4xvgAAAAAAAAAAcx7cPqPsij5Pmg+9Xf65vpbkkL5qlIS+AAAAAAAAAACaKwS/Z87pvUw3mj0pkeM85x1ku0e/FD4AAIA/AACAP0x3EL+rdzC+H6UAu+nZ7DiiQBI+CIogOQAAgD8AAIA/My8Svae8YT9snUI+wjjKvpAmIr5o3Ts+AAAAAAAAAADGbR0//DLrPr50ZD4KbPG+Xc0Zvhxmi74AAAAAAAAAAPMEgj3Drmo7GIYPPQQ4DTuVFEa70idhvAAAAAAAAAAAM5LnvEgdsrr6E8s8ygQbvSDmmjsdTwc+AACAPwAAAABqqOA+3BrTvboMbjzhwp48z2gPPsCCdL0AAIA/AACAP6BiB771Bes+oqnQPbU/g76HA7C9EAj+PQAAAAAAAAAAM8MFOxRutTl68Q09G3C1PJpTNztdcXE8AACAPwAAgD9z/q8+MSosvQvfWbz/T4+6CWE3voXATLwAAIA/AACAP2QjGr8E6dU+WRlGPZpRq77P5Wq+eROuvQAAAAAAAAAA07uyvhE6pD5yizk+nQXHvgFtA77RyCY+AAAAAAAAAABNALs9jwMUP/WQCz5OzAC/yGIrvktECT0AAAAAAAAAAIDdPL2ugc66FWmkvZW6M73BPIg7DzodPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0649599999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCB8KNFaLMCUhpRSlIwBbJRLwowBdJRHQFoppRGc4HZ1fZQoaAZoCWgPQwjObcK9MvtPwJSGlFKUaBVLpWgWR0BaKbCm/FisdX2UKGgGaAloD0MI6j9rfvyDQsCUhpRSlGgVS65oFkdAWjNqBVdX1nV9lChoBmgJaA9DCJPgDWlUdETAlIaUUpRoFUuuaBZHQFo7RArxy4p1fZQoaAZoCWgPQwjye5v+7IcDQJSGlFKUaBVLv2gWR0BaTGDHwPRRdX2UKGgGaAloD0MIrUuN0M/YRECUhpRSlGgVS7ZoFkdAWlGOXE61cHV9lChoBmgJaA9DCGN7Lei9wUTAlIaUUpRoFUvBaBZHQFpZ02LpA2R1fZQoaAZoCWgPQwh6jV2ielcwQJSGlFKUaBVN6ANoFkdAWmCEkB0ZFXV9lChoBmgJaA9DCPsCeuHOh0FAlIaUUpRoFUuIaBZHQFqOwX668QJ1fZQoaAZoCWgPQwht/l915AgtQJSGlFKUaBVLfmgWR0BamWweNkvsdX2UKGgGaAloD0MI/dgkP+IfQECUhpRSlGgVS4toFkdAWpseS0Sh8XV9lChoBmgJaA9DCKcgPxu5KjLAlIaUUpRoFUthaBZHQFqpqLCN0eV1fZQoaAZoCWgPQwi5wVCHFU4RQJSGlFKUaBVLsGgWR0BarXYL9deIdX2UKGgGaAloD0MIG2MnvAQzPkCUhpRSlGgVS4BoFkdAWru1eBxxUHV9lChoBmgJaA9DCGE3bFuUI1fAlIaUUpRoFUvQaBZHQFrCNPP9kz51fZQoaAZoCWgPQwjpfeNrzylSQJSGlFKUaBVN6ANoFkdAWupjiGWUr3V9lChoBmgJaA9DCIXsvI3NbFrAlIaUUpRoFUvlaBZHQFsD7U5MlC11fZQoaAZoCWgPQwgE4nX9gt32v5SGlFKUaBVLjmgWR0BbBa4x1xKhdX2UKGgGaAloD0MIij+KOnOqVsCUhpRSlGgVTUQBaBZHQFsRdEsrd311fZQoaAZoCWgPQwiAZDp0ej4vwJSGlFKUaBVLnmgWR0BcOfvv0AcUdX2UKGgGaAloD0MIO29jsyNdMMCUhpRSlGgVS51oFkdAXEh19v0h/3V9lChoBmgJaA9DCOnTKvpDj01AlIaUUpRoFUufaBZHQFxcqOcUdrB1fZQoaAZoCWgPQwiARBMoYo9OQJSGlFKUaBVN6ANoFkdAXGf1uivgWXV9lChoBmgJaA9DCBQEj29vw2TAlIaUUpRoFUvVaBZHQFx6GMXJo011fZQoaAZoCWgPQwjMXUvIBxUowJSGlFKUaBVLlmgWR0BcfrmdRR/FdX2UKGgGaAloD0MILCy4H/CQMMCUhpRSlGgVS5FoFkdAXJLqcEvCdnV9lChoBmgJaA9DCFuZ8Ev9vEZAlIaUUpRoFU3oA2gWR0BcqPAGjbi7dX2UKGgGaAloD0MIBoNr7uhjSMCUhpRSlGgVS21oFkdAXLH4wh4dIXV9lChoBmgJaA9DCPc7FAX6hDtAlIaUUpRoFU3oA2gWR0Bcvs1wYLssdX2UKGgGaAloD0MI2CrB4nDGDkCUhpRSlGgVS/poFkdAXOsCih37lHV9lChoBmgJaA9DCHmUSnhCVVDAlIaUUpRoFUv7aBZHQFz5qMFUyYZ1fZQoaAZoCWgPQwhMT1jiAS1JwJSGlFKUaBVL+WgWR0BdBYw7DEWJdX2UKGgGaAloD0MIg4jUtIsrQMCUhpRSlGgVS5xoFkdAXSQNRWLgoHV9lChoBmgJaA9DCHuCxHb3BDBAlIaUUpRoFUvNaBZHQF0rLuQZGax1fZQoaAZoCWgPQwizCTAsf7o+wJSGlFKUaBVL8GgWR0BdLY/eLvTgdX2UKGgGaAloD0MIxF29iowuPECUhpRSlGgVTegDaBZHQF1dTsY2sJZ1fZQoaAZoCWgPQwiCHf8FgqRMwJSGlFKUaBVLpWgWR0BdatKh+OOsdX2UKGgGaAloD0MIiCr8Gd4OQUCUhpRSlGgVS+poFkdAXXAhPj4pMHV9lChoBmgJaA9DCCDT2jS2rybAlIaUUpRoFUu3aBZHQF2Gqaw2VFB1fZQoaAZoCWgPQwg5KGGm7b8hQJSGlFKUaBVLf2gWR0BdjYjSofjkdX2UKGgGaAloD0MIguUIGcgBTMCUhpRSlGgVS5BoFkdAXZRnf2saKnV9lChoBmgJaA9DCLaEfNCzNTHAlIaUUpRoFUvMaBZHQF2kNFBppN91fZQoaAZoCWgPQwiVnBN7aBlVQJSGlFKUaBVN6ANoFkdAXagx8D0UXnV9lChoBmgJaA9DCKyRXWkZ2TtAlIaUUpRoFUuFaBZHQF3QZCv5gw51fZQoaAZoCWgPQwj4xaUqbeEcwJSGlFKUaBVLwmgWR0Bd9KB3A2ycdX2UKGgGaAloD0MIjnbc8LuZO8CUhpRSlGgVS99oFkdAXiSDsdDIBHV9lChoBmgJaA9DCIZWJ2corgNAlIaUUpRoFUueaBZHQF4mQ1rIo3J1fZQoaAZoCWgPQwhl/WZiupASwJSGlFKUaBVLcWgWR0BeMzbi6xxDdX2UKGgGaAloD0MIbeLkfoci7z+UhpRSlGgVS8toFkdAXjW2BreqJnV9lChoBmgJaA9DCEM9fQT+eChAlIaUUpRoFUv1aBZHQF5UtiQT2391fZQoaAZoCWgPQwjhQEgWMNhXwJSGlFKUaBVNFgFoFkdAXoTTWoWHlHV9lChoBmgJaA9DCKXd6GM+zDxAlIaUUpRoFU3oA2gWR0Bek28VYZEVdX2UKGgGaAloD0MIhdGsbB/LUsCUhpRSlGgVTSgBaBZHQF6uaR6nivR1fZQoaAZoCWgPQwjRsYNKXEFLQJSGlFKUaBVLsWgWR0BezHBxgiNbdX2UKGgGaAloD0MIGXEBaJQuGECUhpRSlGgVS61oFkdAXtuCsfaHsXV9lChoBmgJaA9DCJn1YignTE9AlIaUUpRoFU3oA2gWR0Be8Ka1Cw8odX2UKGgGaAloD0MINfEO8KQxOkCUhpRSlGgVS3doFkdAXwVz90ihWnV9lChoBmgJaA9DCKfNOA1RKULAlIaUUpRoFUvzaBZHQF8Nm9xp+MJ1fZQoaAZoCWgPQwjSp1X0h05awJSGlFKUaBVN6ANoFkdAXx4qiGnGbXV9lChoBmgJaA9DCIHoSZnUpGHAlIaUUpRoFU1ZAWgWR0BfOCBClabGdX2UKGgGaAloD0MIPzbJj/htNsCUhpRSlGgVS6FoFkdAX2O9pRGc4HV9lChoBmgJaA9DCInS3uALeFtAlIaUUpRoFU3oA2gWR0BfZprgwXZXdX2UKGgGaAloD0MIjIaMR6mE9T+UhpRSlGgVS5xoFkdAX34MiKR+0HV9lChoBmgJaA9DCGqhZHJqlUbAlIaUUpRoFUv1aBZHQGBVot16mfp1fZQoaAZoCWgPQwgC1xUzwolAwJSGlFKUaBVL0GgWR0BgWd3wCr93dX2UKGgGaAloD0MICCC1iZNrWkCUhpRSlGgVTegDaBZHQGBmb6YVqN91fZQoaAZoCWgPQwiEfqZet6w6QJSGlFKUaBVLmWgWR0BgbVkvsZ5zdX2UKGgGaAloD0MIEd+JWS8dVcCUhpRSlGgVS9VoFkdAYG873fyf+XV9lChoBmgJaA9DCHSbcK/MpzxAlIaUUpRoFU3oA2gWR0BgcwhbGFSLdX2UKGgGaAloD0MIEY3uIHbuJcCUhpRSlGgVTegDaBZHQGCGg0Kqn3t1fZQoaAZoCWgPQwjqB3WRQpkaQJSGlFKUaBVL0mgWR0Bgk4lfJFLGdX2UKGgGaAloD0MIGm1VEtnnEkCUhpRSlGgVS/NoFkdAYKvo/RmbsnV9lChoBmgJaA9DCAaBlUOL7BbAlIaUUpRoFUvUaBZHQGDA9ehPCVN1fZQoaAZoCWgPQwgpeAq5UtBTQJSGlFKUaBVN6ANoFkdAYM+Be5WilHV9lChoBmgJaA9DCLKC34YYPyJAlIaUUpRoFU0AAWgWR0Bg00yzollcdX2UKGgGaAloD0MIE7afjPE8XsCUhpRSlGgVTUkBaBZHQGDgFmFrVON1fZQoaAZoCWgPQwiv6xfshmFDwJSGlFKUaBVL2mgWR0Bg4C2OQyRCdX2UKGgGaAloD0MIhCugUE+nT8CUhpRSlGgVTUQBaBZHQGDqfSQYDT11fZQoaAZoCWgPQwgVNgNckLNBwJSGlFKUaBVLzmgWR0BhB+rKeTV2dX2UKGgGaAloD0MIr3yW58HVIUCUhpRSlGgVS7poFkdAYSmOJ+DvmnV9lChoBmgJaA9DCOXyH9Jv7ztAlIaUUpRoFUuwaBZHQGEz9FnZkCp1fZQoaAZoCWgPQwhNgczOoilbwJSGlFKUaBVNeQFoFkdAYT6sBhhH9XV9lChoBmgJaA9DCA5KmGn7u0zAlIaUUpRoFUvYaBZHQGFJOP/7zkJ1fZQoaAZoCWgPQwhN1qiHaDhBwJSGlFKUaBVL2GgWR0BhVffCQ9zPdX2UKGgGaAloD0MIU3jQ7Lo1UUCUhpRSlGgVTegDaBZHQGFxZOzposZ1fZQoaAZoCWgPQwgCEeLK2R9DwJSGlFKUaBVL3mgWR0BhfuQnx8UmdX2UKGgGaAloD0MIEas/wjBoQUCUhpRSlGgVTegDaBZHQGGFOuzQeFN1fZQoaAZoCWgPQwitMH2vIXxNwJSGlFKUaBVNsAJoFkdAYZJJjDsMRnV9lChoBmgJaA9DCMKE0axsHzBAlIaUUpRoFUvUaBZHQGGcb+tKZlZ1fZQoaAZoCWgPQwifd2NBYVZQQJSGlFKUaBVN6ANoFkdAYZ5wTdtVJnV9lChoBmgJaA9DCBO1NLdCqDvAlIaUUpRoFUvIaBZHQGGw7Rv3rUt1fZQoaAZoCWgPQwhI4XoUrkVAwJSGlFKUaBVLv2gWR0Bht6on8baRdX2UKGgGaAloD0MIofSFkPMwV0CUhpRSlGgVTegDaBZHQGHiQob4rSV1fZQoaAZoCWgPQwgKEAUzpipEQJSGlFKUaBVL62gWR0Bh5TnkkrwwdX2UKGgGaAloD0MIRS+jWG6JOUCUhpRSlGgVS8xoFkdAYeeQ4jrzG3V9lChoBmgJaA9DCMdKzLOSKjVAlIaUUpRoFU3oA2gWR0Bh6pSzgMtsdX2UKGgGaAloD0MIBfuvc9MKOECUhpRSlGgVS6loFkdAYe4lRgqmTHV9lChoBmgJaA9DCG/VdaimjCPAlIaUUpRoFUu2aBZHQGHyD8+A3DN1fZQoaAZoCWgPQwhM32sIjsv2P5SGlFKUaBVL2WgWR0Bh+Jzo2XLNdX2UKGgGaAloD0MI76zddqHlQECUhpRSlGgVTegDaBZHQGINK9oN/fB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 52,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f429ede7559aac4a7d37070699422e552e028da61d09dec67b89759d99f8505e
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc38123e88e4713672cb6b5c3e645c2fc4262e8a344dc34ff3332a4bf46b326d
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdafcbe1e19beb6750c3f46e5ace0df958d39b25e3dfbdf9edea3dd8711cdde1
|
3 |
+
size 262759
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -191.27324901897228, "std_reward": 66.79530376436031, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T11:29:41.907660"}
|