CrispyAlbumArt commited on
Commit
6dd533e
1 Parent(s): b1021bb

1. Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -191.27 +/- 66.80
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe06c059170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe06c059200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe06c059290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe06c059320>", "_build": "<function ActorCriticPolicy._build at 0x7fe06c0593b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe06c059440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe06c0594d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe06c059560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe06c0595f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe06c059680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe06c059710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe06c09fab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652354784.589936, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOv9L0gBrE+YuiWvpJlr75T/C+8lr4xvgAAAAAAAAAAcx7cPqPsij5Pmg+9Xf65vpbkkL5qlIS+AAAAAAAAAACaKwS/Z87pvUw3mj0pkeM85x1ku0e/FD4AAIA/AACAP0x3EL+rdzC+H6UAu+nZ7DiiQBI+CIogOQAAgD8AAIA/My8Svae8YT9snUI+wjjKvpAmIr5o3Ts+AAAAAAAAAADGbR0//DLrPr50ZD4KbPG+Xc0Zvhxmi74AAAAAAAAAAPMEgj3Drmo7GIYPPQQ4DTuVFEa70idhvAAAAAAAAAAAM5LnvEgdsrr6E8s8ygQbvSDmmjsdTwc+AACAPwAAAABqqOA+3BrTvboMbjzhwp48z2gPPsCCdL0AAIA/AACAP6BiB771Bes+oqnQPbU/g76HA7C9EAj+PQAAAAAAAAAAM8MFOxRutTl68Q09G3C1PJpTNztdcXE8AACAPwAAgD9z/q8+MSosvQvfWbz/T4+6CWE3voXATLwAAIA/AACAP2QjGr8E6dU+WRlGPZpRq77P5Wq+eROuvQAAAAAAAAAA07uyvhE6pD5yizk+nQXHvgFtA77RyCY+AAAAAAAAAABNALs9jwMUP/WQCz5OzAC/yGIrvktECT0AAAAAAAAAAIDdPL2ugc66FWmkvZW6M73BPIg7DzodPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCB8KNFaLMCUhpRSlIwBbJRLwowBdJRHQFoppRGc4HZ1fZQoaAZoCWgPQwjObcK9MvtPwJSGlFKUaBVLpWgWR0BaKbCm/FisdX2UKGgGaAloD0MI6j9rfvyDQsCUhpRSlGgVS65oFkdAWjNqBVdX1nV9lChoBmgJaA9DCJPgDWlUdETAlIaUUpRoFUuuaBZHQFo7RArxy4p1fZQoaAZoCWgPQwjye5v+7IcDQJSGlFKUaBVLv2gWR0BaTGDHwPRRdX2UKGgGaAloD0MIrUuN0M/YRECUhpRSlGgVS7ZoFkdAWlGOXE61cHV9lChoBmgJaA9DCGN7Lei9wUTAlIaUUpRoFUvBaBZHQFpZ02LpA2R1fZQoaAZoCWgPQwh6jV2ielcwQJSGlFKUaBVN6ANoFkdAWmCEkB0ZFXV9lChoBmgJaA9DCPsCeuHOh0FAlIaUUpRoFUuIaBZHQFqOwX668QJ1fZQoaAZoCWgPQwht/l915AgtQJSGlFKUaBVLfmgWR0BamWweNkvsdX2UKGgGaAloD0MI/dgkP+IfQECUhpRSlGgVS4toFkdAWpseS0Sh8XV9lChoBmgJaA9DCKcgPxu5KjLAlIaUUpRoFUthaBZHQFqpqLCN0eV1fZQoaAZoCWgPQwi5wVCHFU4RQJSGlFKUaBVLsGgWR0BarXYL9deIdX2UKGgGaAloD0MIG2MnvAQzPkCUhpRSlGgVS4BoFkdAWru1eBxxUHV9lChoBmgJaA9DCGE3bFuUI1fAlIaUUpRoFUvQaBZHQFrCNPP9kz51fZQoaAZoCWgPQwjpfeNrzylSQJSGlFKUaBVN6ANoFkdAWupjiGWUr3V9lChoBmgJaA9DCIXsvI3NbFrAlIaUUpRoFUvlaBZHQFsD7U5MlC11fZQoaAZoCWgPQwgE4nX9gt32v5SGlFKUaBVLjmgWR0BbBa4x1xKhdX2UKGgGaAloD0MIij+KOnOqVsCUhpRSlGgVTUQBaBZHQFsRdEsrd311fZQoaAZoCWgPQwiAZDp0ej4vwJSGlFKUaBVLnmgWR0BcOfvv0AcUdX2UKGgGaAloD0MIO29jsyNdMMCUhpRSlGgVS51oFkdAXEh19v0h/3V9lChoBmgJaA9DCOnTKvpDj01AlIaUUpRoFUufaBZHQFxcqOcUdrB1fZQoaAZoCWgPQwiARBMoYo9OQJSGlFKUaBVN6ANoFkdAXGf1uivgWXV9lChoBmgJaA9DCBQEj29vw2TAlIaUUpRoFUvVaBZHQFx6GMXJo011fZQoaAZoCWgPQwjMXUvIBxUowJSGlFKUaBVLlmgWR0BcfrmdRR/FdX2UKGgGaAloD0MILCy4H/CQMMCUhpRSlGgVS5FoFkdAXJLqcEvCdnV9lChoBmgJaA9DCFuZ8Ev9vEZAlIaUUpRoFU3oA2gWR0BcqPAGjbi7dX2UKGgGaAloD0MIBoNr7uhjSMCUhpRSlGgVS21oFkdAXLH4wh4dIXV9lChoBmgJaA9DCPc7FAX6hDtAlIaUUpRoFU3oA2gWR0Bcvs1wYLssdX2UKGgGaAloD0MI2CrB4nDGDkCUhpRSlGgVS/poFkdAXOsCih37lHV9lChoBmgJaA9DCHmUSnhCVVDAlIaUUpRoFUv7aBZHQFz5qMFUyYZ1fZQoaAZoCWgPQwhMT1jiAS1JwJSGlFKUaBVL+WgWR0BdBYw7DEWJdX2UKGgGaAloD0MIg4jUtIsrQMCUhpRSlGgVS5xoFkdAXSQNRWLgoHV9lChoBmgJaA9DCHuCxHb3BDBAlIaUUpRoFUvNaBZHQF0rLuQZGax1fZQoaAZoCWgPQwizCTAsf7o+wJSGlFKUaBVL8GgWR0BdLY/eLvTgdX2UKGgGaAloD0MIxF29iowuPECUhpRSlGgVTegDaBZHQF1dTsY2sJZ1fZQoaAZoCWgPQwiCHf8FgqRMwJSGlFKUaBVLpWgWR0BdatKh+OOsdX2UKGgGaAloD0MIiCr8Gd4OQUCUhpRSlGgVS+poFkdAXXAhPj4pMHV9lChoBmgJaA9DCCDT2jS2rybAlIaUUpRoFUu3aBZHQF2Gqaw2VFB1fZQoaAZoCWgPQwg5KGGm7b8hQJSGlFKUaBVLf2gWR0BdjYjSofjkdX2UKGgGaAloD0MIguUIGcgBTMCUhpRSlGgVS5BoFkdAXZRnf2saKnV9lChoBmgJaA9DCLaEfNCzNTHAlIaUUpRoFUvMaBZHQF2kNFBppN91fZQoaAZoCWgPQwiVnBN7aBlVQJSGlFKUaBVN6ANoFkdAXagx8D0UXnV9lChoBmgJaA9DCKyRXWkZ2TtAlIaUUpRoFUuFaBZHQF3QZCv5gw51fZQoaAZoCWgPQwj4xaUqbeEcwJSGlFKUaBVLwmgWR0Bd9KB3A2ycdX2UKGgGaAloD0MIjnbc8LuZO8CUhpRSlGgVS99oFkdAXiSDsdDIBHV9lChoBmgJaA9DCIZWJ2corgNAlIaUUpRoFUueaBZHQF4mQ1rIo3J1fZQoaAZoCWgPQwhl/WZiupASwJSGlFKUaBVLcWgWR0BeMzbi6xxDdX2UKGgGaAloD0MIbeLkfoci7z+UhpRSlGgVS8toFkdAXjW2BreqJnV9lChoBmgJaA9DCEM9fQT+eChAlIaUUpRoFUv1aBZHQF5UtiQT2391fZQoaAZoCWgPQwjhQEgWMNhXwJSGlFKUaBVNFgFoFkdAXoTTWoWHlHV9lChoBmgJaA9DCKXd6GM+zDxAlIaUUpRoFU3oA2gWR0Bek28VYZEVdX2UKGgGaAloD0MIhdGsbB/LUsCUhpRSlGgVTSgBaBZHQF6uaR6nivR1fZQoaAZoCWgPQwjRsYNKXEFLQJSGlFKUaBVLsWgWR0BezHBxgiNbdX2UKGgGaAloD0MIGXEBaJQuGECUhpRSlGgVS61oFkdAXtuCsfaHsXV9lChoBmgJaA9DCJn1YignTE9AlIaUUpRoFU3oA2gWR0Be8Ka1Cw8odX2UKGgGaAloD0MINfEO8KQxOkCUhpRSlGgVS3doFkdAXwVz90ihWnV9lChoBmgJaA9DCKfNOA1RKULAlIaUUpRoFUvzaBZHQF8Nm9xp+MJ1fZQoaAZoCWgPQwjSp1X0h05awJSGlFKUaBVN6ANoFkdAXx4qiGnGbXV9lChoBmgJaA9DCIHoSZnUpGHAlIaUUpRoFU1ZAWgWR0BfOCBClabGdX2UKGgGaAloD0MIPzbJj/htNsCUhpRSlGgVS6FoFkdAX2O9pRGc4HV9lChoBmgJaA9DCInS3uALeFtAlIaUUpRoFU3oA2gWR0BfZprgwXZXdX2UKGgGaAloD0MIjIaMR6mE9T+UhpRSlGgVS5xoFkdAX34MiKR+0HV9lChoBmgJaA9DCGqhZHJqlUbAlIaUUpRoFUv1aBZHQGBVot16mfp1fZQoaAZoCWgPQwgC1xUzwolAwJSGlFKUaBVL0GgWR0BgWd3wCr93dX2UKGgGaAloD0MICCC1iZNrWkCUhpRSlGgVTegDaBZHQGBmb6YVqN91fZQoaAZoCWgPQwiEfqZet6w6QJSGlFKUaBVLmWgWR0BgbVkvsZ5zdX2UKGgGaAloD0MIEd+JWS8dVcCUhpRSlGgVS9VoFkdAYG873fyf+XV9lChoBmgJaA9DCHSbcK/MpzxAlIaUUpRoFU3oA2gWR0BgcwhbGFSLdX2UKGgGaAloD0MIEY3uIHbuJcCUhpRSlGgVTegDaBZHQGCGg0Kqn3t1fZQoaAZoCWgPQwjqB3WRQpkaQJSGlFKUaBVL0mgWR0Bgk4lfJFLGdX2UKGgGaAloD0MIGm1VEtnnEkCUhpRSlGgVS/NoFkdAYKvo/RmbsnV9lChoBmgJaA9DCAaBlUOL7BbAlIaUUpRoFUvUaBZHQGDA9ehPCVN1fZQoaAZoCWgPQwgpeAq5UtBTQJSGlFKUaBVN6ANoFkdAYM+Be5WilHV9lChoBmgJaA9DCLKC34YYPyJAlIaUUpRoFU0AAWgWR0Bg00yzollcdX2UKGgGaAloD0MIE7afjPE8XsCUhpRSlGgVTUkBaBZHQGDgFmFrVON1fZQoaAZoCWgPQwiv6xfshmFDwJSGlFKUaBVL2mgWR0Bg4C2OQyRCdX2UKGgGaAloD0MIhCugUE+nT8CUhpRSlGgVTUQBaBZHQGDqfSQYDT11fZQoaAZoCWgPQwgVNgNckLNBwJSGlFKUaBVLzmgWR0BhB+rKeTV2dX2UKGgGaAloD0MIr3yW58HVIUCUhpRSlGgVS7poFkdAYSmOJ+DvmnV9lChoBmgJaA9DCOXyH9Jv7ztAlIaUUpRoFUuwaBZHQGEz9FnZkCp1fZQoaAZoCWgPQwhNgczOoilbwJSGlFKUaBVNeQFoFkdAYT6sBhhH9XV9lChoBmgJaA9DCA5KmGn7u0zAlIaUUpRoFUvYaBZHQGFJOP/7zkJ1fZQoaAZoCWgPQwhN1qiHaDhBwJSGlFKUaBVL2GgWR0BhVffCQ9zPdX2UKGgGaAloD0MIU3jQ7Lo1UUCUhpRSlGgVTegDaBZHQGFxZOzposZ1fZQoaAZoCWgPQwgCEeLK2R9DwJSGlFKUaBVL3mgWR0BhfuQnx8UmdX2UKGgGaAloD0MIEas/wjBoQUCUhpRSlGgVTegDaBZHQGGFOuzQeFN1fZQoaAZoCWgPQwitMH2vIXxNwJSGlFKUaBVNsAJoFkdAYZJJjDsMRnV9lChoBmgJaA9DCMKE0axsHzBAlIaUUpRoFUvUaBZHQGGcb+tKZlZ1fZQoaAZoCWgPQwifd2NBYVZQQJSGlFKUaBVN6ANoFkdAYZ5wTdtVJnV9lChoBmgJaA9DCBO1NLdCqDvAlIaUUpRoFUvIaBZHQGGw7Rv3rUt1fZQoaAZoCWgPQwhI4XoUrkVAwJSGlFKUaBVLv2gWR0Bht6on8baRdX2UKGgGaAloD0MIofSFkPMwV0CUhpRSlGgVTegDaBZHQGHiQob4rSV1fZQoaAZoCWgPQwgKEAUzpipEQJSGlFKUaBVL62gWR0Bh5TnkkrwwdX2UKGgGaAloD0MIRS+jWG6JOUCUhpRSlGgVS8xoFkdAYeeQ4jrzG3V9lChoBmgJaA9DCMdKzLOSKjVAlIaUUpRoFU3oA2gWR0Bh6pSzgMtsdX2UKGgGaAloD0MIBfuvc9MKOECUhpRSlGgVS6loFkdAYe4lRgqmTHV9lChoBmgJaA9DCG/VdaimjCPAlIaUUpRoFUu2aBZHQGHyD8+A3DN1fZQoaAZoCWgPQwhM32sIjsv2P5SGlFKUaBVL2WgWR0Bh+Jzo2XLNdX2UKGgGaAloD0MI76zddqHlQECUhpRSlGgVTegDaBZHQGINK9oN/fB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:440276169966d5d247f89e94acf245be5dcbe6af3e011f1e40c7b93dc3acc6fb
3
+ size 143952
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe06c059170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe06c059200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe06c059290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe06c059320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe06c0593b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe06c059440>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe06c0594d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe06c059560>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe06c0595f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe06c059680>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe06c059710>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe06c09fab0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 212992,
46
+ "_total_timesteps": 200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652354784.589936,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOv9L0gBrE+YuiWvpJlr75T/C+8lr4xvgAAAAAAAAAAcx7cPqPsij5Pmg+9Xf65vpbkkL5qlIS+AAAAAAAAAACaKwS/Z87pvUw3mj0pkeM85x1ku0e/FD4AAIA/AACAP0x3EL+rdzC+H6UAu+nZ7DiiQBI+CIogOQAAgD8AAIA/My8Svae8YT9snUI+wjjKvpAmIr5o3Ts+AAAAAAAAAADGbR0//DLrPr50ZD4KbPG+Xc0Zvhxmi74AAAAAAAAAAPMEgj3Drmo7GIYPPQQ4DTuVFEa70idhvAAAAAAAAAAAM5LnvEgdsrr6E8s8ygQbvSDmmjsdTwc+AACAPwAAAABqqOA+3BrTvboMbjzhwp48z2gPPsCCdL0AAIA/AACAP6BiB771Bes+oqnQPbU/g76HA7C9EAj+PQAAAAAAAAAAM8MFOxRutTl68Q09G3C1PJpTNztdcXE8AACAPwAAgD9z/q8+MSosvQvfWbz/T4+6CWE3voXATLwAAIA/AACAP2QjGr8E6dU+WRlGPZpRq77P5Wq+eROuvQAAAAAAAAAA07uyvhE6pD5yizk+nQXHvgFtA77RyCY+AAAAAAAAAABNALs9jwMUP/WQCz5OzAC/yGIrvktECT0AAAAAAAAAAIDdPL2ugc66FWmkvZW6M73BPIg7DzodPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0649599999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDCB8KNFaLMCUhpRSlIwBbJRLwowBdJRHQFoppRGc4HZ1fZQoaAZoCWgPQwjObcK9MvtPwJSGlFKUaBVLpWgWR0BaKbCm/FisdX2UKGgGaAloD0MI6j9rfvyDQsCUhpRSlGgVS65oFkdAWjNqBVdX1nV9lChoBmgJaA9DCJPgDWlUdETAlIaUUpRoFUuuaBZHQFo7RArxy4p1fZQoaAZoCWgPQwjye5v+7IcDQJSGlFKUaBVLv2gWR0BaTGDHwPRRdX2UKGgGaAloD0MIrUuN0M/YRECUhpRSlGgVS7ZoFkdAWlGOXE61cHV9lChoBmgJaA9DCGN7Lei9wUTAlIaUUpRoFUvBaBZHQFpZ02LpA2R1fZQoaAZoCWgPQwh6jV2ielcwQJSGlFKUaBVN6ANoFkdAWmCEkB0ZFXV9lChoBmgJaA9DCPsCeuHOh0FAlIaUUpRoFUuIaBZHQFqOwX668QJ1fZQoaAZoCWgPQwht/l915AgtQJSGlFKUaBVLfmgWR0BamWweNkvsdX2UKGgGaAloD0MI/dgkP+IfQECUhpRSlGgVS4toFkdAWpseS0Sh8XV9lChoBmgJaA9DCKcgPxu5KjLAlIaUUpRoFUthaBZHQFqpqLCN0eV1fZQoaAZoCWgPQwi5wVCHFU4RQJSGlFKUaBVLsGgWR0BarXYL9deIdX2UKGgGaAloD0MIG2MnvAQzPkCUhpRSlGgVS4BoFkdAWru1eBxxUHV9lChoBmgJaA9DCGE3bFuUI1fAlIaUUpRoFUvQaBZHQFrCNPP9kz51fZQoaAZoCWgPQwjpfeNrzylSQJSGlFKUaBVN6ANoFkdAWupjiGWUr3V9lChoBmgJaA9DCIXsvI3NbFrAlIaUUpRoFUvlaBZHQFsD7U5MlC11fZQoaAZoCWgPQwgE4nX9gt32v5SGlFKUaBVLjmgWR0BbBa4x1xKhdX2UKGgGaAloD0MIij+KOnOqVsCUhpRSlGgVTUQBaBZHQFsRdEsrd311fZQoaAZoCWgPQwiAZDp0ej4vwJSGlFKUaBVLnmgWR0BcOfvv0AcUdX2UKGgGaAloD0MIO29jsyNdMMCUhpRSlGgVS51oFkdAXEh19v0h/3V9lChoBmgJaA9DCOnTKvpDj01AlIaUUpRoFUufaBZHQFxcqOcUdrB1fZQoaAZoCWgPQwiARBMoYo9OQJSGlFKUaBVN6ANoFkdAXGf1uivgWXV9lChoBmgJaA9DCBQEj29vw2TAlIaUUpRoFUvVaBZHQFx6GMXJo011fZQoaAZoCWgPQwjMXUvIBxUowJSGlFKUaBVLlmgWR0BcfrmdRR/FdX2UKGgGaAloD0MILCy4H/CQMMCUhpRSlGgVS5FoFkdAXJLqcEvCdnV9lChoBmgJaA9DCFuZ8Ev9vEZAlIaUUpRoFU3oA2gWR0BcqPAGjbi7dX2UKGgGaAloD0MIBoNr7uhjSMCUhpRSlGgVS21oFkdAXLH4wh4dIXV9lChoBmgJaA9DCPc7FAX6hDtAlIaUUpRoFU3oA2gWR0Bcvs1wYLssdX2UKGgGaAloD0MI2CrB4nDGDkCUhpRSlGgVS/poFkdAXOsCih37lHV9lChoBmgJaA9DCHmUSnhCVVDAlIaUUpRoFUv7aBZHQFz5qMFUyYZ1fZQoaAZoCWgPQwhMT1jiAS1JwJSGlFKUaBVL+WgWR0BdBYw7DEWJdX2UKGgGaAloD0MIg4jUtIsrQMCUhpRSlGgVS5xoFkdAXSQNRWLgoHV9lChoBmgJaA9DCHuCxHb3BDBAlIaUUpRoFUvNaBZHQF0rLuQZGax1fZQoaAZoCWgPQwizCTAsf7o+wJSGlFKUaBVL8GgWR0BdLY/eLvTgdX2UKGgGaAloD0MIxF29iowuPECUhpRSlGgVTegDaBZHQF1dTsY2sJZ1fZQoaAZoCWgPQwiCHf8FgqRMwJSGlFKUaBVLpWgWR0BdatKh+OOsdX2UKGgGaAloD0MIiCr8Gd4OQUCUhpRSlGgVS+poFkdAXXAhPj4pMHV9lChoBmgJaA9DCCDT2jS2rybAlIaUUpRoFUu3aBZHQF2Gqaw2VFB1fZQoaAZoCWgPQwg5KGGm7b8hQJSGlFKUaBVLf2gWR0BdjYjSofjkdX2UKGgGaAloD0MIguUIGcgBTMCUhpRSlGgVS5BoFkdAXZRnf2saKnV9lChoBmgJaA9DCLaEfNCzNTHAlIaUUpRoFUvMaBZHQF2kNFBppN91fZQoaAZoCWgPQwiVnBN7aBlVQJSGlFKUaBVN6ANoFkdAXagx8D0UXnV9lChoBmgJaA9DCKyRXWkZ2TtAlIaUUpRoFUuFaBZHQF3QZCv5gw51fZQoaAZoCWgPQwj4xaUqbeEcwJSGlFKUaBVLwmgWR0Bd9KB3A2ycdX2UKGgGaAloD0MIjnbc8LuZO8CUhpRSlGgVS99oFkdAXiSDsdDIBHV9lChoBmgJaA9DCIZWJ2corgNAlIaUUpRoFUueaBZHQF4mQ1rIo3J1fZQoaAZoCWgPQwhl/WZiupASwJSGlFKUaBVLcWgWR0BeMzbi6xxDdX2UKGgGaAloD0MIbeLkfoci7z+UhpRSlGgVS8toFkdAXjW2BreqJnV9lChoBmgJaA9DCEM9fQT+eChAlIaUUpRoFUv1aBZHQF5UtiQT2391fZQoaAZoCWgPQwjhQEgWMNhXwJSGlFKUaBVNFgFoFkdAXoTTWoWHlHV9lChoBmgJaA9DCKXd6GM+zDxAlIaUUpRoFU3oA2gWR0Bek28VYZEVdX2UKGgGaAloD0MIhdGsbB/LUsCUhpRSlGgVTSgBaBZHQF6uaR6nivR1fZQoaAZoCWgPQwjRsYNKXEFLQJSGlFKUaBVLsWgWR0BezHBxgiNbdX2UKGgGaAloD0MIGXEBaJQuGECUhpRSlGgVS61oFkdAXtuCsfaHsXV9lChoBmgJaA9DCJn1YignTE9AlIaUUpRoFU3oA2gWR0Be8Ka1Cw8odX2UKGgGaAloD0MINfEO8KQxOkCUhpRSlGgVS3doFkdAXwVz90ihWnV9lChoBmgJaA9DCKfNOA1RKULAlIaUUpRoFUvzaBZHQF8Nm9xp+MJ1fZQoaAZoCWgPQwjSp1X0h05awJSGlFKUaBVN6ANoFkdAXx4qiGnGbXV9lChoBmgJaA9DCIHoSZnUpGHAlIaUUpRoFU1ZAWgWR0BfOCBClabGdX2UKGgGaAloD0MIPzbJj/htNsCUhpRSlGgVS6FoFkdAX2O9pRGc4HV9lChoBmgJaA9DCInS3uALeFtAlIaUUpRoFU3oA2gWR0BfZprgwXZXdX2UKGgGaAloD0MIjIaMR6mE9T+UhpRSlGgVS5xoFkdAX34MiKR+0HV9lChoBmgJaA9DCGqhZHJqlUbAlIaUUpRoFUv1aBZHQGBVot16mfp1fZQoaAZoCWgPQwgC1xUzwolAwJSGlFKUaBVL0GgWR0BgWd3wCr93dX2UKGgGaAloD0MICCC1iZNrWkCUhpRSlGgVTegDaBZHQGBmb6YVqN91fZQoaAZoCWgPQwiEfqZet6w6QJSGlFKUaBVLmWgWR0BgbVkvsZ5zdX2UKGgGaAloD0MIEd+JWS8dVcCUhpRSlGgVS9VoFkdAYG873fyf+XV9lChoBmgJaA9DCHSbcK/MpzxAlIaUUpRoFU3oA2gWR0BgcwhbGFSLdX2UKGgGaAloD0MIEY3uIHbuJcCUhpRSlGgVTegDaBZHQGCGg0Kqn3t1fZQoaAZoCWgPQwjqB3WRQpkaQJSGlFKUaBVL0mgWR0Bgk4lfJFLGdX2UKGgGaAloD0MIGm1VEtnnEkCUhpRSlGgVS/NoFkdAYKvo/RmbsnV9lChoBmgJaA9DCAaBlUOL7BbAlIaUUpRoFUvUaBZHQGDA9ehPCVN1fZQoaAZoCWgPQwgpeAq5UtBTQJSGlFKUaBVN6ANoFkdAYM+Be5WilHV9lChoBmgJaA9DCLKC34YYPyJAlIaUUpRoFU0AAWgWR0Bg00yzollcdX2UKGgGaAloD0MIE7afjPE8XsCUhpRSlGgVTUkBaBZHQGDgFmFrVON1fZQoaAZoCWgPQwiv6xfshmFDwJSGlFKUaBVL2mgWR0Bg4C2OQyRCdX2UKGgGaAloD0MIhCugUE+nT8CUhpRSlGgVTUQBaBZHQGDqfSQYDT11fZQoaAZoCWgPQwgVNgNckLNBwJSGlFKUaBVLzmgWR0BhB+rKeTV2dX2UKGgGaAloD0MIr3yW58HVIUCUhpRSlGgVS7poFkdAYSmOJ+DvmnV9lChoBmgJaA9DCOXyH9Jv7ztAlIaUUpRoFUuwaBZHQGEz9FnZkCp1fZQoaAZoCWgPQwhNgczOoilbwJSGlFKUaBVNeQFoFkdAYT6sBhhH9XV9lChoBmgJaA9DCA5KmGn7u0zAlIaUUpRoFUvYaBZHQGFJOP/7zkJ1fZQoaAZoCWgPQwhN1qiHaDhBwJSGlFKUaBVL2GgWR0BhVffCQ9zPdX2UKGgGaAloD0MIU3jQ7Lo1UUCUhpRSlGgVTegDaBZHQGFxZOzposZ1fZQoaAZoCWgPQwgCEeLK2R9DwJSGlFKUaBVL3mgWR0BhfuQnx8UmdX2UKGgGaAloD0MIEas/wjBoQUCUhpRSlGgVTegDaBZHQGGFOuzQeFN1fZQoaAZoCWgPQwitMH2vIXxNwJSGlFKUaBVNsAJoFkdAYZJJjDsMRnV9lChoBmgJaA9DCMKE0axsHzBAlIaUUpRoFUvUaBZHQGGcb+tKZlZ1fZQoaAZoCWgPQwifd2NBYVZQQJSGlFKUaBVN6ANoFkdAYZ5wTdtVJnV9lChoBmgJaA9DCBO1NLdCqDvAlIaUUpRoFUvIaBZHQGGw7Rv3rUt1fZQoaAZoCWgPQwhI4XoUrkVAwJSGlFKUaBVLv2gWR0Bht6on8baRdX2UKGgGaAloD0MIofSFkPMwV0CUhpRSlGgVTegDaBZHQGHiQob4rSV1fZQoaAZoCWgPQwgKEAUzpipEQJSGlFKUaBVL62gWR0Bh5TnkkrwwdX2UKGgGaAloD0MIRS+jWG6JOUCUhpRSlGgVS8xoFkdAYeeQ4jrzG3V9lChoBmgJaA9DCMdKzLOSKjVAlIaUUpRoFU3oA2gWR0Bh6pSzgMtsdX2UKGgGaAloD0MIBfuvc9MKOECUhpRSlGgVS6loFkdAYe4lRgqmTHV9lChoBmgJaA9DCG/VdaimjCPAlIaUUpRoFUu2aBZHQGHyD8+A3DN1fZQoaAZoCWgPQwhM32sIjsv2P5SGlFKUaBVL2WgWR0Bh+Jzo2XLNdX2UKGgGaAloD0MI76zddqHlQECUhpRSlGgVTegDaBZHQGINK9oN/fB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 52,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f429ede7559aac4a7d37070699422e552e028da61d09dec67b89759d99f8505e
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc38123e88e4713672cb6b5c3e645c2fc4262e8a344dc34ff3332a4bf46b326d
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdafcbe1e19beb6750c3f46e5ace0df958d39b25e3dfbdf9edea3dd8711cdde1
3
+ size 262759
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -191.27324901897228, "std_reward": 66.79530376436031, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T11:29:41.907660"}