{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe06c09fab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652355079.3400135, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADqE70Q96o/E2NZvct2s77itPm8uk34vQAAAAAAAAAAgAFlPWLTlD4JRDq9zaOFvgScH7w9ZrK8AAAAAAAAAABglw++Bif6Pn/EhD6xC4q+l2cUPhpluz0AAAAAAAAAAJrhbbslwZA+0JqkOZf0or7Wciw9f+SSPQAAAAAAAAAAplwYPk86B7wuoYc8WoXPuvfpab0CfK27AACAPwAAgD9zupi91gFsPcbJKb1rmoG+7u6zvFI/Qj0AAAAAAAAAAObxCD5cGkc+epCdvd8wWb5imEc8aAjTPAAAAAAAAAAAQGGAPbhU0Lv77Fm9tNNiPR0qArxGuSA7AACAPwAAgD9m9lg7nceEP6BOWLzkxa2+ydysvKhPrj0AAAAAAAAAAE3qDD17qIK6v1CDtmqPjbGUBA871taaNQAAgD8AAIA/ABk2vobHiT/C/oy+qVGcvgRwj762c8w7AAAAAAAAAAAac7E9MOCMP3PeWz4Mk8e+J6n7Pc5kWz0AAAAAAAAAAJpZQD32LDe666fFvK87ojbXJGe6xsUStgAAAAAAAAAAgIOjvSGH6rzKACG9A11cvfJJ8b1o/Y++AACAPwAAgD8w4KE+zshJP1JTFr6H/aq+uBAFPp7dIb4AAAAAAAAAAJoRs7zchw28spEnvD19pTxZ4mG9KheJPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINdHno8wpckCUhpRSlIwBbJRNHQGMAXSUR0CXfn8LKFIvdX2UKGgGaAloD0MI9wSJ7e6DQkCUhpRSlGgVS/xoFkdAl3+NO2y9mHV9lChoBmgJaA9DCOp3YWu2JmJAlIaUUpRoFU3oA2gWR0CXgYqtHQQddX2UKGgGaAloD0MIl5F6T2XocUCUhpRSlGgVTZsBaBZHQJeChRk3CKt1fZQoaAZoCWgPQwjzAYHOZO9wQJSGlFKUaBVNhAFoFkdAl4LCkXUH6nV9lChoBmgJaA9DCGpq2Vpf0HFAlIaUUpRoFU18AWgWR0CXg3qKgqVhdX2UKGgGaAloD0MImiMrvwz7UECUhpRSlGgVS9RoFkdAl4O09lmOEXV9lChoBmgJaA9DCP7TDRQ4S3JAlIaUUpRoFU3KAWgWR0CXhQ+7Dl5odX2UKGgGaAloD0MIbuAO1Cm7bkCUhpRSlGgVTQQCaBZHQJeFiSEDhcZ1fZQoaAZoCWgPQwj8VYDvNnVtQJSGlFKUaBVNugFoFkdAl4a8VtXPq3V9lChoBmgJaA9DCH6rdeJyfkNAlIaUUpRoFU0CAWgWR0CXh6QMQVbidX2UKGgGaAloD0MImMCtu/n7bkCUhpRSlGgVTSABaBZHQJeZqJN0vGp1fZQoaAZoCWgPQwgSv2INV5hyQJSGlFKUaBVNagFoFkdAl5rAzP8htHV9lChoBmgJaA9DCEZEMXmDzHJAlIaUUpRoFU1SAWgWR0CXm3kVN5+pdX2UKGgGaAloD0MIrKqX36nccUCUhpRSlGgVTakBaBZHQJecCvJRwZR1fZQoaAZoCWgPQwjHKxA9KR1yQJSGlFKUaBVNdwFoFkdAl5wnSro4dnV9lChoBmgJaA9DCG4VxEBX0XBAlIaUUpRoFU3PAWgWR0CXnGwblzU7dX2UKGgGaAloD0MI7E53njiHckCUhpRSlGgVTRUBaBZHQJedood+5OJ1fZQoaAZoCWgPQwjzc0NT9oJtQJSGlFKUaBVNVQFoFkdAl5/BlxwQ2HV9lChoBmgJaA9DCA/QfTkzonFAlIaUUpRoFU1yAWgWR0CXn+guyu6mdX2UKGgGaAloD0MIiCtn7wxJcECUhpRSlGgVTTABaBZHQJehKjk+5e91fZQoaAZoCWgPQwg4hgDg2AFLQJSGlFKUaBVL62gWR0CXohTvAoG6dX2UKGgGaAloD0MIg6eQKzWjcUCUhpRSlGgVTVYBaBZHQJejIkVvddp1fZQoaAZoCWgPQwj5MeauJQVvQJSGlFKUaBVNywFoFkdAl6Xm4/eLvXV9lChoBmgJaA9DCL2nctqTIHFAlIaUUpRoFU0wAWgWR0CXpmPvrnkldX2UKGgGaAloD0MIyTzyB8O2cECUhpRSlGgVTWIBaBZHQJemcEGJN0x1fZQoaAZoCWgPQwgXoG0162duQJSGlFKUaBVNSgFoFkdAl6h181Gb1HV9lChoBmgJaA9DCEd1OpB1R3FAlIaUUpRoFU0NAWgWR0CXqI0XgtOEdX2UKGgGaAloD0MINQnekEZYbkCUhpRSlGgVTa4BaBZHQJeorBtUGV11fZQoaAZoCWgPQwh+42vP7MFxQJSGlFKUaBVNVAFoFkdAl6lg8nuy/3V9lChoBmgJaA9DCIjZy7ZTnHFAlIaUUpRoFU1iAWgWR0CXqlQ2/BWQdX2UKGgGaAloD0MIshAdAgcocECUhpRSlGgVTUUCaBZHQJeqos3AEdN1fZQoaAZoCWgPQwhkrgyqjV5yQJSGlFKUaBVNIwFoFkdAl6ujslb/wXV9lChoBmgJaA9DCMpOP6iLLW5AlIaUUpRoFU1hAWgWR0CXrdM5wOvudX2UKGgGaAloD0MIqTC2EOTAUUCUhpRSlGgVS89oFkdAl64QJ1JUYXV9lChoBmgJaA9DCJTBUfKqn3FAlIaUUpRoFU3aAWgWR0CXrn1DBuXNdX2UKGgGaAloD0MIhqxu9RzNcECUhpRSlGgVTSoBaBZHQJevEam4y451fZQoaAZoCWgPQwj3OqkvC/BxQJSGlFKUaBVNmwFoFkdAl7FMJx//enV9lChoBmgJaA9DCFFOtKtQznBAlIaUUpRoFU09AWgWR0CXspKLbYbsdX2UKGgGaAloD0MI41MAjOcdckCUhpRSlGgVTUIBaBZHQJeyuRJVbRp1fZQoaAZoCWgPQwjI0ocuqNlwQJSGlFKUaBVNNwFoFkdAl7QfdqL0jHV9lChoBmgJaA9DCF00ZDzKunBAlIaUUpRoFU1XAWgWR0CXtX6po9LYdX2UKGgGaAloD0MIwoh9AqjwY0CUhpRSlGgVTegDaBZHQJe2s+otL+R1fZQoaAZoCWgPQwieKAmJ9GxxQJSGlFKUaBVNYgFoFkdAl7fb1Iy0r3V9lChoBmgJaA9DCPwdigK9UHFAlIaUUpRoFU2AAWgWR0CXuA0CRwIddX2UKGgGaAloD0MI/HCQEKWqckCUhpRSlGgVTQsBaBZHQJe4UwFkhA51fZQoaAZoCWgPQwhQ/BhzF2BwQJSGlFKUaBVNTQFoFkdAl7qS9ugpSnV9lChoBmgJaA9DCLmmQGYnnXFAlIaUUpRoFU1BAWgWR0CXus33Hq/udX2UKGgGaAloD0MIol7waQ6ickCUhpRSlGgVTewBaBZHQJe9eGqPwNN1fZQoaAZoCWgPQwgxKNNo8r9wQJSGlFKUaBVN2gFoFkdAl73hmPHT7XV9lChoBmgJaA9DCMeA7PVu4W9AlIaUUpRoFU0dAWgWR0CXveyLQ5WBdX2UKGgGaAloD0MI+ir52F15bUCUhpRSlGgVTTABaBZHQJe+gKc/dIp1fZQoaAZoCWgPQwiaXmIsEyhwQJSGlFKUaBVNFgFoFkdAl8BYA4n4PHV9lChoBmgJaA9DCOXsndHWZXBAlIaUUpRoFU2jAWgWR0CX00ylenhsdX2UKGgGaAloD0MIAI+oUF1JcECUhpRSlGgVTWYBaBZHQJfTo0fozN51fZQoaAZoCWgPQwgoKhvW1KdwQJSGlFKUaBVNPwFoFkdAl9XTjBEa2nV9lChoBmgJaA9DCDeo/dbOnnBAlIaUUpRoFU1MAWgWR0CX1o8kUsWgdX2UKGgGaAloD0MIx2KbVDQjcUCUhpRSlGgVTRgBaBZHQJfXLIEKVpt1fZQoaAZoCWgPQwgpPGh2nQVxQJSGlFKUaBVNRwJoFkdAl9daqjrRjXV9lChoBmgJaA9DCKVmD7QCXUZAlIaUUpRoFUvuaBZHQJfYnAN5MUR1fZQoaAZoCWgPQwhUNqyp7NVwQJSGlFKUaBVNUQFoFkdAl9lZflZHNHV9lChoBmgJaA9DCPxvJTs2wlNAlIaUUpRoFUvSaBZHQJfZxpL26Cl1fZQoaAZoCWgPQwhUAfc8/3BmQJSGlFKUaBVN6ANoFkdAl9p40Mw1znV9lChoBmgJaA9DCIDxDBq6jXBAlIaUUpRoFU3iAWgWR0CX2oNzr/sFdX2UKGgGaAloD0MIynA8nwGJcUCUhpRSlGgVTdQBaBZHQJfbd2ki2Ul1fZQoaAZoCWgPQwiC/de56Y5wQJSGlFKUaBVNfgFoFkdAl9z7nTy8SXV9lChoBmgJaA9DCKvtJvim5XFAlIaUUpRoFU1lAWgWR0CX3QT7EYO2dX2UKGgGaAloD0MIVkYjn1dGbkCUhpRSlGgVTRcBaBZHQJfdMhr30wt1fZQoaAZoCWgPQwi6vg8HidlwQJSGlFKUaBVNfgFoFkdAl91F2vB7/nV9lChoBmgJaA9DCMmqCDeZ7mRAlIaUUpRoFU3oA2gWR0CX3yJvo/zKdX2UKGgGaAloD0MICVG+oIXmR0CUhpRSlGgVS9poFkdAl+A+/L1VYXV9lChoBmgJaA9DCFu1a0Iaj3BAlIaUUpRoFU0aAWgWR0CX4EhuwX67dX2UKGgGaAloD0MI2SeAYiTScECUhpRSlGgVTSYBaBZHQJfg5f3N9ph1fZQoaAZoCWgPQwhaYmU0snRwQJSGlFKUaBVNGwFoFkdAl+HLCWNWEXV9lChoBmgJaA9DCM07TtGRRHJAlIaUUpRoFU0cAWgWR0CX4xcQAdXDdX2UKGgGaAloD0MIxCEbSBfVbECUhpRSlGgVTX4BaBZHQJfjUN5MURF1fZQoaAZoCWgPQwhvfsNEgw5KQJSGlFKUaBVLymgWR0CX4/DvE0iydX2UKGgGaAloD0MIRdrGn6incUCUhpRSlGgVTeMBaBZHQJfkVIe5nUV1fZQoaAZoCWgPQwjRr62fPvxwQJSGlFKUaBVNOwFoFkdAl+TiHh0heXV9lChoBmgJaA9DCFml9EyvfWxAlIaUUpRoFU1CAWgWR0CX5SIWP91mdX2UKGgGaAloD0MI1xTI7CwFcUCUhpRSlGgVTSkBaBZHQJflRwEQoTh1fZQoaAZoCWgPQwioNc07Tm9xQJSGlFKUaBVNCAFoFkdAl+WxFRYRunV9lChoBmgJaA9DCIrHRbVIQnBAlIaUUpRoFU0sAWgWR0CX5rCrLhaUdX2UKGgGaAloD0MIcZF7unomcECUhpRSlGgVTTkBaBZHQJfnYM3IdU91fZQoaAZoCWgPQwj3zf3VYzZxQJSGlFKUaBVNMwJoFkdAl+hJ7LMcInV9lChoBmgJaA9DCHnqkQa3U0VAlIaUUpRoFUvraBZHQJfobRTjvNN1fZQoaAZoCWgPQwjrjzAMGENxQJSGlFKUaBVNSwFoFkdAl+m+PRzBAXV9lChoBmgJaA9DCM0Bgjn6n25AlIaUUpRoFU0oAWgWR0CX7H9wWFewdX2UKGgGaAloD0MI7BSrBqEEcUCUhpRSlGgVTWABaBZHQJftWlFc6eZ1fZQoaAZoCWgPQwikjo6rEctrQJSGlFKUaBVNjwFoFkdAl+15u/Dcd3V9lChoBmgJaA9DCAIR4spZTm5AlIaUUpRoFU0mAWgWR0CX7dFaSs8xdX2UKGgGaAloD0MI4nK8AlHDbUCUhpRSlGgVTRcBaBZHQJfuYNnXd0t1fZQoaAZoCWgPQwgHfentD69wQJSGlFKUaBVNTAFoFkdAl+7Q+6iCa3V9lChoBmgJaA9DCEllijkI4m9AlIaUUpRoFU08AWgWR0CX70CIk7fYdX2UKGgGaAloD0MI96xrtJzIcECUhpRSlGgVTU4BaBZHQJfwGr8zhxZ1fZQoaAZoCWgPQwjrw3qjFs9yQJSGlFKUaBVNOAFoFkdAl/I0WVNYbXV9lChoBmgJaA9DCHv0hvtIqm5AlIaUUpRoFU1uAWgWR0CX82tXPqs2dX2UKGgGaAloD0MIpYKKql8UcECUhpRSlGgVTZsBaBZHQJfzyohpxm11fZQoaAZoCWgPQwjWGd8X1xdwQJSGlFKUaBVNSAFoFkdAl/QBxDLKWHV9lChoBmgJaA9DCCOjA5IwHXJAlIaUUpRoFU1DAWgWR0CX9AEVnEl3dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}