File size: 5,441 Bytes
6ff6eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ce566
6ff6eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig
from datasets import load_dataset
from transformers import TrainingArguments
from trl import SFTTrainer
from peft import LoraConfig
# from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
from torch.nn import CrossEntropyLoss

import time
random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)

dataset = load_dataset("Vezora/Tested-22k-Python-Alpaca", split="train")

def chatml_format(example):
    """Format the dataset for training, accounting for empty columns."""
    return {
        "instruction": example['instruction'] if 'instruction' in example else " \n",
        "input": example['input'] if 'input' in example else " \n",
        "system": example['system'] if 'system' in example else " \n",
        "output": example['output'] if 'output' in example else " \n",
    }

# Format dataset
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)

n_ahead_talk_global = 4
n_passes_global = 2
n_ahead_global = 8
n_examples = 0

def model_init(params):
    original = False
    if params is None:
        params = {}
    else:
        params = params.params
    # save params to file
    n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
    n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
    n_passes = params.get("n_passes", n_passes_global if not original else 1)
    gumbel_temperature = params.get("gumbel_temperature", 1)
    use_start_thought_token = params.get("use_start_thought_token", True)
    use_end_thought_token = params.get("use_end_thought_token", True)
    include_policy_loss = params.get("include_policy_loss", True)
    gumbel_detach = params.get("gumbel_detach", True)
    merged_talk_heads = params.get("merged_talk_heads", True)
    residual_think_head = params.get("residual_think_head", False)
    optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)

    model_id = "Crystalcareai/Quiet-Star-Custom"
    tokenizer_id = model_id
    print("Loading model")

    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
        max_thoughts=n_ahead + n_ahead_talk + 1,
        merged_talk_heads=merged_talk_heads,
        merged_lm_and_talk_heads=False,
        merged_lm_and_think_heads=True,
        use_concat_talk_head=True,
        use_shallow_think=True,
        use_shallow_talk=False,
        use_complex_think_head=False,
        use_complex_talk_head=True,
        use_weighted_talk_head=True,
        trust_remote_code=True,
        device_map="auto",
    )
    print("Loaded model")

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
    tokenizer.pad_token_id = tokenizer.eos_token_id

    special_tokens_to_add = []
    if model.use_start_thought_token:
        special_tokens_to_add.append("<|startthought|>")
    if model.use_end_thought_token:
        special_tokens_to_add.append("<|endthought|>")
    if special_tokens_to_add:
        tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
        model.resize_token_embeddings(len(tokenizer))
    model.tokenizer = tokenizer
    for name, module in model.named_modules():
        if "embed" in name:
            print(module, flush=True)

    model.gumbel_detach = gumbel_detach
    model.include_policy_loss = include_policy_loss
    model.use_end_thought_token = use_end_thought_token
    model.use_start_thought_token = use_start_thought_token
    model.n_ahead = n_ahead
    model.n_ahead_talk = n_ahead_talk
    model.n_passes = n_passes
    model.residual_think_head = residual_think_head
    model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
    model.gumbel_temperature = gumbel_temperature
    model.original_mode = original
    model.config_params = params
    model.run_start = int(time.time())
    model.train()
    return model

max_seq_length = 1024
run_id = int(time.time())
training_args = TrainingArguments(
    output_dir="./out",
    num_train_epochs=3,
    per_device_train_batch_size=1,
    gradient_checkpointing=False,
    gradient_accumulation_steps=8,
    optim="lion_32bit",
    logging_steps=1,
    save_strategy="steps",
    save_steps=300,
    max_steps=1000,
    bf16=True,
    tf32=False,
    learning_rate=6e-05,
    max_grad_norm=0.3,
    warmup_ratio=0.06,
    lr_scheduler_type="cosine",
    push_to_hub=False,
    report_to="wandb"
)

peft_config = LoraConfig(
          r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj"],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none", 
    use_dora=True,
)


torch.autograd.set_detect_anomaly(True)

# Set the device for each process
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# torch.cuda.set_device(device)

model = model_init(None)  # Initialize the model

tokenizer = model.tokenizer

trainer = SFTTrainer(
    args=training_args,
    train_dataset=dataset,
    model=model,
    tokenizer=tokenizer,
    max_seq_length=max_seq_length,
    dataset_text_field="output",
    peft_config=peft_config,
)

trainer.train()