Quiet-Star-Custom / optuna.py
Crystalcareai's picture
Create optuna.py
fe73328 verified
import optuna
import torch
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from datasets import load_dataset
from trl import SFTTrainer
import time
# Set random seed for reproducibility
random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)
# Load dataset
dataset = load_dataset("tatsu-lab/alpaca", split="train")
def chatml_format(example):
"""Format the dataset for training, accounting for empty columns."""
return {
"instruction": example['instruction'] if 'instruction' in example else " \n",
"input": example['input'] if 'input' in example else " \n",
"system": example['system'] if 'system' in example else " \n",
"output": example['output'] if 'output' in example else " \n",
}
# Format dataset
dataset = dataset.map(chatml_format, remove_columns=dataset.column_names)
# Define the model initialization function
def model_init(trial=None):
original = False
params = {}
if trial is not None:
n_ahead = 1
n_ahead_talk = 1
n_passes = 1
gumbel_temperature = 1
use_start_thought_token = True
use_end_thought_token = True
include_policy_loss = True
gumbel_detach = True
merged_talk_heads = True
residual_think_head = False
optimize_lm_head_only_at_start = False
model_id = "Crystalcareai/Quiet-Star-Custom"
tokenizer_id = model_id
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
max_thoughts=n_ahead + n_ahead_talk + 1,
merged_talk_heads=merged_talk_heads,
merged_lm_and_talk_heads=False,
merged_lm_and_think_heads=True,
use_concat_talk_head=True,
use_shallow_think=True,
use_shallow_talk=False,
use_complex_think_head=False,
use_complex_talk_head=True,
use_weighted_talk_head=True,
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding="left")
tokenizer.pad_token_id = tokenizer.eos_token_id
special_tokens_to_add = []
if model.use_start_thought_token:
special_tokens_to_add.append("<|startthought|>")
if model.use_end_thought_token:
special_tokens_to_add.append("<|endthought|>")
if special_tokens_to_add:
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
model.resize_token_embeddings(len(tokenizer))
model.tokenizer = tokenizer
for name, module in model.named_modules():
if "embed" in name:
print(module, flush=True)
model.gumbel_detach = gumbel_detach
model.include_policy_loss = include_policy_loss
model.use_end_thought_token = use_end_thought_token
model.use_start_thought_token = use_start_thought_token
model.n_ahead = n_ahead
model.n_ahead_talk = n_ahead_talk
model.n_passes = n_passes
model.residual_think_head = residual_think_head
model.gumbel_temperature = gumbel_temperature
model.original_mode = original
model.config_params = params
model.run_start = int(time.time())
model.train()
return model
# Define the objective function for Optuna
# Define the objective function for Optuna
def objective(trial):
# Hyperparameters to be optimized
learning_rate = trial.suggest_float("learning_rate", 1e-07, 1e-06, log=True)
max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 1.0)
warmup_steps = trial.suggest_int("warmup_steps", 0, 20)
gradient_accumulation_steps = trial.suggest_int("gradient_accumulation_steps", 4, 8)
model = model_init(trial)
training_args = TrainingArguments(
output_dir="./out",
num_train_epochs=3,
max_steps=30,
per_device_train_batch_size=1,
logging_steps=1,
optim="lion_32bit",
save_strategy="steps",
save_steps=3000,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
max_grad_norm=max_grad_norm,
warmup_steps=warmup_steps,
lr_scheduler_type="cosine",
report_to="none" # Disable reporting to avoid errors related to WandB in this context
)
trainer = SFTTrainer(
args=training_args,
train_dataset=dataset,
model=model,
tokenizer=model.tokenizer,
max_seq_length=1024,
dataset_text_field="output",
)
# Train the model and get the training loss
train_result = trainer.train()
loss = train_result.training_loss
return loss
# Create a study and optimize
study = optuna.create_study(storage="sqlite:///db.sqlite3")
study.optimize(objective, n_trials=100)
# Print the best trial
print("Best trial:")
trial = study.best_trial
print(f" Loss: {trial.value}")
print(" Params: ")
for key, value in trial.params.items():
print(f" {key}: {value}")