CultriX commited on
Commit
942d931
1 Parent(s): 2e2b485

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - merge
4
+ - mergekit
5
+ - lazymergekit
6
+ - CultriX/MonaTrix-v4
7
+ - bardsai/jaskier-7b-dpo-v5.6
8
+ - eren23/ogno-monarch-jaskier-merge-7b
9
+ base_model:
10
+ - CultriX/MonaTrix-v4
11
+ - bardsai/jaskier-7b-dpo-v5.6
12
+ - eren23/ogno-monarch-jaskier-merge-7b
13
+ ---
14
+
15
+ # DominaTrix-7B-v2
16
+
17
+ DominaTrix-7B-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [CultriX/MonaTrix-v4](https://huggingface.co/CultriX/MonaTrix-v4)
19
+ * [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6)
20
+ * [eren23/ogno-monarch-jaskier-merge-7b](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: mistralai/Mistral-7B-Instruct-v0.2
27
+ # No parameters necessary for base model
28
+ - model: CultriX/MonaTrix-v4
29
+ #Emphasize the beginning of Vicuna format models
30
+ parameters:
31
+ weight: 0.36
32
+ density: 0.65
33
+ - model: bardsai/jaskier-7b-dpo-v5.6
34
+ parameters:
35
+ weight: 0.34
36
+ density: 0.6
37
+ # Vicuna format
38
+ - model: eren23/ogno-monarch-jaskier-merge-7b
39
+ parameters:
40
+ weight: 0.3
41
+ density: 0.6
42
+ merge_method: dare_ties
43
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
44
+ parameters:
45
+ int8_mask: true
46
+ dtype: bfloat16
47
+ random_seed: 0
48
+ ```
49
+
50
+ ## 💻 Usage
51
+
52
+ ```python
53
+ !pip install -qU transformers accelerate
54
+
55
+ from transformers import AutoTokenizer
56
+ import transformers
57
+ import torch
58
+
59
+ model = "CultriX/DominaTrix-7B-v2"
60
+ messages = [{"role": "user", "content": "What is a large language model?"}]
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(model)
63
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+ pipeline = transformers.pipeline(
65
+ "text-generation",
66
+ model=model,
67
+ torch_dtype=torch.float16,
68
+ device_map="auto",
69
+ )
70
+
71
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
72
+ print(outputs[0]["generated_text"])
73
+ ```