--- tags: - merge - mergekit - lazymergekit - mlabonne/Monarch-7B - CultriX/MonaTrix-v2 - CultriX/NeuralTrixlaser-bf16 base_model: - mlabonne/Monarch-7B - CultriX/MonaTrix-v2 - CultriX/NeuralTrixlaser-bf16 --- # MonaTrix-v3 MonaTrix-v3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) * [CultriX/MonaTrix-v2](https://huggingface.co/CultriX/MonaTrix-v2) * [CultriX/NeuralTrixlaser-bf16](https://huggingface.co/CultriX/NeuralTrixlaser-bf16) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralMaxime-7B-slerp # no parameters necessary for base model - model: mlabonne/Monarch-7B parameters: density: 0.65 weight: 0.4 - model: CultriX/MonaTrix-v2 parameters: density: 0.6 weight: 0.35 - model: CultriX/NeuralTrixlaser-bf16 parameters: density: 0.6 weight: 0.35 merge_method: dare_ties base_model: Kukedlc/NeuralMaxime-7B-slerp parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/MonaTrix-v3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```