--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: cyner_deberta results: [] --- # cyner_deberta This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0685 - Precision: 0.7801 - Recall: 0.8110 - F1: 0.7952 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1285 | 1.42 | 500 | 0.0762 | 0.7305 | 0.8033 | 0.7652 | 0.9823 | | 0.041 | 2.84 | 1000 | 0.0685 | 0.7801 | 0.8110 | 0.7952 | 0.9839 | | 0.024 | 4.26 | 1500 | 0.0796 | 0.7957 | 0.8008 | 0.7982 | 0.9855 | | 0.0156 | 5.68 | 2000 | 0.0747 | 0.7836 | 0.8276 | 0.8050 | 0.9858 | | 0.0106 | 7.1 | 2500 | 0.0817 | 0.7961 | 0.8327 | 0.8140 | 0.9859 | | 0.0064 | 8.52 | 3000 | 0.0828 | 0.7942 | 0.8429 | 0.8178 | 0.9865 | | 0.0049 | 9.94 | 3500 | 0.0858 | 0.7976 | 0.8352 | 0.8160 | 0.9865 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1