--- license: apache-2.0 base_model: jackaduma/SecBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aptner_secbert results: [] --- # aptner_secbert This model is a fine-tuned version of [jackaduma/SecBERT](https://huggingface.co/jackaduma/SecBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3230 - Precision: 0.5124 - Recall: 0.5356 - F1: 0.5237 - Accuracy: 0.9142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6662 | 0.59 | 500 | 0.3587 | 0.4744 | 0.4743 | 0.4744 | 0.9113 | | 0.3128 | 1.19 | 1000 | 0.3230 | 0.5124 | 0.5356 | 0.5237 | 0.9142 | | 0.2374 | 1.78 | 1500 | 0.3429 | 0.4750 | 0.5714 | 0.5188 | 0.9083 | | 0.1904 | 2.37 | 2000 | 0.3650 | 0.4945 | 0.5598 | 0.5251 | 0.9090 | | 0.1521 | 2.97 | 2500 | 0.3765 | 0.4713 | 0.5783 | 0.5193 | 0.9055 | | 0.1101 | 3.56 | 3000 | 0.4023 | 0.4727 | 0.5744 | 0.5186 | 0.9067 | | 0.1019 | 4.15 | 3500 | 0.4322 | 0.4726 | 0.5571 | 0.5114 | 0.9056 | | 0.0764 | 4.74 | 4000 | 0.4595 | 0.4592 | 0.5897 | 0.5163 | 0.9039 | | 0.0619 | 5.34 | 4500 | 0.4755 | 0.4740 | 0.5783 | 0.5210 | 0.9062 | | 0.059 | 5.93 | 5000 | 0.4514 | 0.5055 | 0.5649 | 0.5335 | 0.9126 | | 0.0429 | 6.52 | 5500 | 0.5036 | 0.474 | 0.5666 | 0.5162 | 0.9065 | | 0.0425 | 7.12 | 6000 | 0.5249 | 0.4767 | 0.5726 | 0.5203 | 0.9064 | | 0.0349 | 7.71 | 6500 | 0.5537 | 0.4634 | 0.5744 | 0.5129 | 0.9038 | | 0.0338 | 8.3 | 7000 | 0.5301 | 0.4839 | 0.5672 | 0.5223 | 0.9089 | | 0.0255 | 8.9 | 7500 | 0.5545 | 0.4731 | 0.5735 | 0.5185 | 0.9059 | | 0.0253 | 9.49 | 8000 | 0.5526 | 0.4789 | 0.5702 | 0.5206 | 0.9074 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1