--- license: apache-2.0 base_model: jackaduma/SecBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: dnrti_secbert results: [] --- # dnrti_secbert This model is a fine-tuned version of [jackaduma/SecBERT](https://huggingface.co/jackaduma/SecBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2274 - Precision: 0.7405 - Recall: 0.7780 - F1: 0.7588 - Accuracy: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6137 | 0.76 | 500 | 0.3731 | 0.5348 | 0.5951 | 0.5633 | 0.8842 | | 0.2993 | 1.52 | 1000 | 0.2853 | 0.6684 | 0.6665 | 0.6674 | 0.9131 | | 0.2157 | 2.28 | 1500 | 0.2624 | 0.6685 | 0.7282 | 0.6971 | 0.9212 | | 0.152 | 3.04 | 2000 | 0.2414 | 0.6923 | 0.7619 | 0.7254 | 0.9308 | | 0.1047 | 3.81 | 2500 | 0.2274 | 0.7405 | 0.7780 | 0.7588 | 0.9389 | | 0.0725 | 4.57 | 3000 | 0.2563 | 0.7262 | 0.7964 | 0.7597 | 0.9370 | | 0.0589 | 5.33 | 3500 | 0.2615 | 0.7489 | 0.8024 | 0.7747 | 0.9411 | | 0.0442 | 6.09 | 4000 | 0.2638 | 0.7543 | 0.8061 | 0.7793 | 0.9434 | | 0.0344 | 6.85 | 4500 | 0.2671 | 0.7635 | 0.8088 | 0.7855 | 0.9448 | | 0.0282 | 7.61 | 5000 | 0.2861 | 0.7584 | 0.8111 | 0.7839 | 0.9439 | | 0.0226 | 8.37 | 5500 | 0.2849 | 0.7693 | 0.8093 | 0.7888 | 0.9456 | | 0.0207 | 9.13 | 6000 | 0.2932 | 0.7643 | 0.8185 | 0.7905 | 0.9456 | | 0.0181 | 9.89 | 6500 | 0.2952 | 0.7665 | 0.8167 | 0.7908 | 0.9459 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1