File size: 11,462 Bytes
4e38daf 621df19 4e38daf 621df19 4e38daf 303b1b2 4e38daf 303b1b2 4e38daf 303b1b2 4e38daf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import spacy
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from .utils import get_idxs_from_text
import streamlit as st
from annotated_text import annotated_text
from .nugget_model_utils import CustomRobertaWithPOS
from .event_nugget_predict import get_event_nuggets
from .realis_model_utils import get_entity_for_realis_from_idx, tokenize_and_align_labels_with_pos_ner_realis
from datasets import load_dataset, Features, ClassLabel, Value, Sequence, Dataset
event_nugget_list = ['B-Phishing',
'I-Phishing',
'O',
'B-DiscoverVulnerability',
'B-Ransom',
'I-Ransom',
'B-Databreach',
'I-DiscoverVulnerability',
'B-PatchVulnerability',
'I-PatchVulnerability',
'I-Databreach']
realis_list = ["O", "Generic", "Other", "Actual"]
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def find_dep_depth(token):
depth = 0
current_token = token
while current_token.head != current_token:
depth += 1
current_token = current_token.head
return min(depth, 16)
nlp = spacy.load('en_core_web_sm')
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
# from .realis_model_utils import CustomRobertaWithPOS as RealisModel
# model_realis = RealisModel(num_classes_realis=4)
# model_realis.load_state_dict(torch.load(f"{os.path.dirname(os.path.abspath(__file__))}/realis_model_state_dict.pth", map_location=device))
# model_realis.eval()
"""
Function: create_dataloader(text_input)
Description: This function prepares a DataLoader for processing text input, including tokenization and alignment of labels.
Inputs:
- text_input: The input text to be processed.
Output:
- dataloader: A DataLoader for the tokenized and batched text data.
- tokenized_dataset_ner: The tokenized dataset used for training.
"""
def create_dataloader(model_nugget, text_input):
event_nuggets = get_event_nuggets(model_nugget, text_input)
doc = nlp(text_input)
content_as_words_emdash = [tok.text for tok in doc]
content_as_words_emdash = [word.replace("``", '"').replace("''", '"').replace("$", "") for word in content_as_words_emdash]
content_idx_dict = get_idxs_from_text(text_input, content_as_words_emdash)
data = []
words = []
nugget_ner_tags = []
pos_spacy = [tok.pos_ for tok in doc]
ner_spacy = [ent.ent_iob_ + "-" + ent.ent_type_ if ent.ent_iob_ != "O" else ent.ent_iob_ for ent in doc]
dep_spacy = [tok.dep_ for tok in doc]
depth_spacy = [find_dep_depth(tok) for tok in doc]
for content_dict in content_idx_dict:
start_idx, end_idx = content_dict["start_idx"], content_dict["end_idx"]
entity = get_entity_for_realis_from_idx(start_idx, end_idx, event_nuggets)
words.append(content_dict["word"])
nugget_ner_tags.append(entity)
content_token_len = len(tokenizer(words, truncation=False, is_split_into_words=True)["input_ids"])
if content_token_len > tokenizer.model_max_length:
no_split = (content_token_len // tokenizer.model_max_length) + 2
split_len = (len(words) // no_split) + 1
last_id = 0
threshold = split_len
for id, token in enumerate(words):
if token == "." and id > threshold:
data.append(
{
"tokens" : words[last_id : id + 1],
"ner_tags" : nugget_ner_tags[last_id : id + 1],
"pos_spacy" : pos_spacy[last_id : id + 1],
"ner_spacy" : ner_spacy[last_id : id + 1],
"dep_spacy" : dep_spacy[last_id : id + 1],
"depth_spacy" : depth_spacy[last_id : id + 1],
}
)
last_id = id + 1
threshold += split_len
data.append({"tokens" : words[last_id : ],
"ner_tags" : nugget_ner_tags[last_id : ],
"pos_spacy" : pos_spacy[last_id : ],
"ner_spacy" : ner_spacy[last_id : ],
"dep_spacy" : dep_spacy[last_id : ],
"depth_spacy" : depth_spacy[last_id : ]})
else:
data.append(
{
"tokens" : words,
"ner_tags" : nugget_ner_tags,
"pos_spacy" : pos_spacy,
"ner_spacy" : ner_spacy,
"dep_spacy" : dep_spacy,
"depth_spacy" : depth_spacy
}
)
ner_features = Features({'tokens' : Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
'ner_tags' : Sequence(feature=ClassLabel(num_classes=len(event_nugget_list), names=event_nugget_list, names_file=None, id=None), length=-1, id=None),
'pos_spacy' : Sequence(feature=ClassLabel(num_classes=len(pos_spacy_tag_list), names=pos_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'ner_spacy' : Sequence(feature=ClassLabel(num_classes=len(ner_spacy_tag_list), names=ner_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'dep_spacy' : Sequence(feature=ClassLabel(num_classes=len(dep_spacy_tag_list), names=dep_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'depth_spacy' : Sequence(feature=ClassLabel(num_classes=17, names= list(range(17)), names_file=None, id=None), length=-1, id=None)
})
dataset = Dataset.from_list(data, features=ner_features)
tokenized_dataset_ner = dataset.map(tokenize_and_align_labels_with_pos_ner_realis, fn_kwargs={'tokenizer' : tokenizer, 'ner_names' : event_nugget_list}, batched=True, load_from_cache_file=False)
tokenized_dataset_ner = tokenized_dataset_ner.with_format("torch")
tokenized_dataset_ner = tokenized_dataset_ner.remove_columns("tokens")
batch_size = 4 # Number of input texts
dataloader = DataLoader(tokenized_dataset_ner, batch_size=batch_size)
return dataloader, tokenized_dataset_ner
"""
Function: predict(dataloader)
Description: This function performs inference on a given DataLoader using a trained model and returns the predicted labels.
Inputs:
- dataloader: A DataLoader containing input data for prediction.
Output:
- predicted_label: A tensor containing the predicted labels for the input data.
"""
def predict(dataloader):
predicted_label = []
for batch in dataloader:
with torch.no_grad():
logits = model_realis(**batch)
batch_predicted_label = logits.argmax(-1)
predicted_label.append(batch_predicted_label)
return torch.cat(predicted_label, dim=-1)
"""
Function: show_annotations(text_input)
Description: This function displays annotated event nuggets in the provided input text using the Streamlit library.
Inputs:
- text_input: The input text containing event nuggets to be annotated and displayed.
Output:
- An interactive display of annotated event nuggets within the input text.
"""
def show_annotations(text_input):
st.title("Event Realis")
dataloader, tokenized_dataset_ner = create_dataloader(text_input)
predicted_label = predict(dataloader)
for idx, labels in enumerate(predicted_label):
token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]
tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]
text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
idxs = get_idxs_from_text(text, tokens)
labels = labels[token_mask]
annotated_text_list = []
last_label = ""
cumulative_tokens = ""
last_id = 0
for idx, label in zip(idxs, labels):
to_label = realis_list[label]
label_short = to_label.split("-")[1] if "-" in to_label else to_label
if last_label == label_short:
cumulative_tokens += text[last_id : idx["end_idx"]]
last_id = idx["end_idx"]
else:
if last_label != "":
if last_label == "O":
annotated_text_list.append(cumulative_tokens)
else:
annotated_text_list.append((cumulative_tokens, last_label))
last_label = label_short
cumulative_tokens = idx["word"]
last_id = idx["end_idx"]
if last_label == "O":
annotated_text_list.append(cumulative_tokens)
else:
annotated_text_list.append((cumulative_tokens, last_label))
annotated_text(annotated_text_list)
"""
Function: get_event_realis(text_input)
Description: This function extracts predicted event realis (event modality) from the provided input text.
Inputs:
- text_input: The input text containing event realis to be extracted.
Output:
- predicted_event_realis: A list of dictionaries, each representing an extracted event realis with start and end offsets,
realis type, and text content.
"""
def get_event_realis(text_input):
dataloader, tokenized_dataset_ner = create_dataloader(text_input)
predicted_label = predict(dataloader)
predicted_event_realis = []
text_length = 0
for idx, labels in enumerate(predicted_label):
token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]
tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]
text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
idxs = get_idxs_from_text(text_input[text_length : ], tokens)
labels = labels[token_mask]
start_idx = 0
end_idx = 0
last_label = ""
for idx, label in zip(idxs, labels):
to_label = realis_list[label]
label_split = to_label
if label_split == last_label:
end_idx = idx["end_idx"]
else:
if text_input[start_idx : end_idx] != "" and last_label != "O":
predicted_event_realis.append(
{
"startOffset" : text_length + start_idx,
"endOffset" : text_length + end_idx,
"realis" : last_label,
"text" : text_input[text_length + start_idx : text_length + end_idx]
}
)
start_idx = idx["start_idx"]
end_idx = idx["start_idx"] + len(idx["word"])
last_label = label_split
text_length += idx["end_idx"]
return predicted_event_realis |