File size: 6,593 Bytes
4e38daf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import torch
import spacy
import en_core_web_sm
from torch import nn
import math
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
from transformers import AutoModel, TrainingArguments, Trainer, RobertaTokenizer, RobertaModel
from transformers import AutoTokenizer
model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
roberta_model = RobertaModel.from_pretrained(model_checkpoint).to(device)
nlp = en_core_web_sm.load()
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
class CustomRobertaWithPOS(nn.Module):
def __init__(self, num_classes):
super(CustomRobertaWithPOS, self).__init__()
self.num_classes = num_classes
self.pos_embed = nn.Embedding(len(pos_spacy_tag_list), 16)
self.ner_embed = nn.Embedding(len(ner_spacy_tag_list), 16)
self.roberta = roberta_model
self.dropout1 = nn.Dropout(0.2)
self.fc1 = nn.Linear(self.roberta.config.hidden_size, num_classes)
def forward(self, input_ids, attention_mask, pos_spacy, ner_spacy, dep_spacy, depth_spacy):
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_output = outputs.last_hidden_state
pos_mask = pos_spacy != -100
pos_one_hot = torch.zeros((pos_spacy.shape[0], pos_spacy.shape[1], len(pos_spacy_tag_list)), dtype=torch.long)
pos_one_hot[pos_mask, pos_spacy[pos_mask]] = 1
pos_one_hot = pos_one_hot.to(device)
ner_mask = ner_spacy != -100
ner_one_hot = torch.zeros((ner_spacy.shape[0], ner_spacy.shape[1], len(ner_spacy_tag_list)), dtype=torch.long)
ner_one_hot[ner_mask, ner_spacy[ner_mask]] = 1
ner_one_hot = ner_one_hot.to(device)
features_concat = last_hidden_output
features_concat = self.dropout1(features_concat)
logits = self.fc1(features_concat)
return logits
def tokenize_and_align_labels_with_pos_ner_dep(examples, tokenizer, label_all_tokens = True):
tokenized_inputs = tokenizer(examples["tokens"], padding='max_length', truncation=True, is_split_into_words=True)
#tokenized_inputs.pop('input_ids')
ner_spacy = []
pos_spacy = []
dep_spacy = []
depth_spacy = []
for i, (pos, ner, dep, depth) in enumerate(zip(examples["pos_spacy"],
examples["ner_spacy"],
examples["dep_spacy"],
examples["depth_spacy"])):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
ner_spacy_ids = []
pos_spacy_ids = []
dep_spacy_ids = []
depth_spacy_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
ner_spacy_ids.append(-100)
pos_spacy_ids.append(-100)
dep_spacy_ids.append(-100)
depth_spacy_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
ner_spacy_ids.append(ner[word_idx])
pos_spacy_ids.append(pos[word_idx])
dep_spacy_ids.append(dep[word_idx])
depth_spacy_ids.append(depth[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
ner_spacy_ids.append(ner[word_idx] if label_all_tokens else -100)
pos_spacy_ids.append(pos[word_idx] if label_all_tokens else -100)
dep_spacy_ids.append(dep[word_idx] if label_all_tokens else -100)
depth_spacy_ids.append(depth[word_idx] if label_all_tokens else -100)
previous_word_idx = word_idx
ner_spacy.append(ner_spacy_ids)
pos_spacy.append(pos_spacy_ids)
dep_spacy.append(dep_spacy_ids)
depth_spacy.append(depth_spacy_ids)
tokenized_inputs["pos_spacy"] = pos_spacy
tokenized_inputs["ner_spacy"] = ner_spacy
tokenized_inputs["dep_spacy"] = dep_spacy
tokenized_inputs["depth_spacy"] = depth_spacy
return tokenized_inputs
def find_nearest_nugget_features(doc, start_idx, end_idx, event_nuggets):
nearest_subtype = None
nearest_dist = math.inf
relative_pos = None
mid_idx = (end_idx + start_idx) / 2
for nugget in event_nuggets:
mid_nugget_idx = (nugget["nugget"]["startOffset"] + nugget["nugget"]["endOffset"]) / 2
dist = abs(mid_nugget_idx - mid_idx)
if dist < nearest_dist:
nearest_dist = dist
nearest_subtype = nugget["subtype"]
for sent in doc.sents:
if between_idxs(mid_idx, sent.start_char, sent.end_char) and between_idxs(mid_nugget_idx, sent.start_char, sent.end_char):
if mid_idx < mid_nugget_idx:
relative_pos = "before-same-sentence"
else:
relative_pos = "after-same-sentence"
break
elif between_idxs(mid_nugget_idx, sent.start_char, sent.end_char) and mid_idx > mid_nugget_idx:
relative_pos = "after-differ-sentence"
break
elif between_idxs(mid_idx, sent.start_char, sent.end_char) and mid_idx < mid_nugget_idx:
relative_pos = "before-differ-sentence"
break
nearest_dist = int(min(10, nearest_dist // 20))
return nearest_subtype, nearest_dist, relative_pos
def find_dep_depth(token):
depth = 0
current_token = token
while current_token.head != current_token:
depth += 1
current_token = current_token.head
return min(depth, 16)
def between_idxs(idx, start_idx, end_idx):
return idx >= start_idx and idx <= end_idx |