File size: 7,094 Bytes
4e38daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
from torch import nn
import en_core_web_sm
from transformers import AutoModel, TrainingArguments, Trainer, RobertaTokenizer, RobertaModel
from transformers import AutoTokenizer

model_checkpoint = "ehsanaghaei/SecureBERT"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
roberta_model = RobertaModel.from_pretrained(model_checkpoint).to(device)

event_nugget_list = ['B-Phishing',
 'I-Phishing',
 'O',
 'B-DiscoverVulnerability',
 'B-Ransom',
 'I-Ransom',
 'B-Databreach',
 'I-DiscoverVulnerability',
 'B-PatchVulnerability',
 'I-PatchVulnerability',
 'I-Databreach']

nlp = en_core_web_sm.load()
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)

class CustomRobertaWithPOS(nn.Module):
    def __init__(self, num_classes_realis):
        super(CustomRobertaWithPOS, self).__init__()
        self.num_classes_realis = num_classes_realis
        self.pos_embed = nn.Embedding(len(pos_spacy_tag_list), 16)
        self.ner_embed = nn.Embedding(len(ner_spacy_tag_list), 8)
        self.dep_embed = nn.Embedding(len(dep_spacy_tag_list), 8)
        self.depth_embed = nn.Embedding(17, 8)
        self.nugget_embed = nn.Embedding(len(event_nugget_list), 8)
        self.roberta = roberta_model
        self.dropout1 = nn.Dropout(0.2)
        self.fc1 = nn.Linear(self.roberta.config.hidden_size + 48, self.num_classes_realis)

    def forward(self, input_ids, attention_mask, pos_spacy, ner_spacy, dep_spacy, depth_spacy, ner_tags):
        outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_output = outputs.last_hidden_state

        pos_mask = pos_spacy != -100
        pos_embed_masked = self.pos_embed(pos_spacy[pos_mask])
        pos_embed = torch.zeros((pos_spacy.shape[0], pos_spacy.shape[1], 16), dtype=torch.float).to(device)
        pos_embed[pos_mask] = pos_embed_masked

        ner_mask = ner_spacy != -100
        ner_embed_masked = self.ner_embed(ner_spacy[ner_mask])
        ner_embed = torch.zeros((ner_spacy.shape[0], ner_spacy.shape[1], 8), dtype=torch.float).to(device)
        ner_embed[ner_mask] = ner_embed_masked

        dep_mask = dep_spacy != -100
        dep_embed_masked = self.dep_embed(dep_spacy[dep_mask])
        dep_embed = torch.zeros((dep_spacy.shape[0], dep_spacy.shape[1], 8), dtype=torch.float).to(device)
        dep_embed[dep_mask] = dep_embed_masked

        depth_mask = depth_spacy != -100
        depth_embed_masked = self.depth_embed(depth_spacy[depth_mask])
        depth_embed = torch.zeros((depth_spacy.shape[0], depth_spacy.shape[1], 8), dtype=torch.float).to(device)
        depth_embed[dep_mask] = depth_embed_masked

        nugget_mask = ner_tags != -100
        nugget_embed_masked = self.nugget_embed(ner_tags[nugget_mask])
        nugget_embed = torch.zeros((ner_tags.shape[0], ner_tags.shape[1], 8), dtype=torch.float).to(device)
        nugget_embed[dep_mask] = nugget_embed_masked

        features_concat = torch.cat((last_hidden_output, pos_embed, ner_embed, dep_embed, depth_embed, nugget_embed), 2).to(device)
        features_concat = self.dropout1(features_concat)
        features_concat = self.dropout1(features_concat)

        logits = self.fc1(features_concat)

        return logits

    
def get_entity_for_realis_from_idx(start_idx, end_idx, event_nuggets):
    event_nuggets_idxs = [(nugget["startOffset"], nugget["endOffset"]) for nugget in event_nuggets]
    for idx, (nugget_start, nugget_end) in enumerate(event_nuggets_idxs):
        if (start_idx == nugget_start and end_idx == nugget_end) or (start_idx == nugget_start and end_idx <= nugget_end) or (start_idx == nugget_start and end_idx > nugget_end) or (end_idx == nugget_end and start_idx < nugget_start) or (start_idx <= nugget_start and end_idx <= nugget_end and end_idx > nugget_start):
            return "B-" + event_nuggets[idx]["subtype"]
        elif (start_idx > nugget_start and end_idx <= nugget_end) or (start_idx > nugget_start and start_idx < nugget_end):
            return "I-" + event_nuggets[idx]["subtype"]
    return "O"

def tokenize_and_align_labels_with_pos_ner_realis(examples, tokenizer, ner_names, label_all_tokens = True):
    tokenized_inputs = tokenizer(examples["tokens"], padding='max_length', truncation=True, is_split_into_words=True)
    #tokenized_inputs.pop('input_ids')
    labels = []
    nuggets = []
    ner_spacy = []
    pos_spacy = []
    dep_spacy = []
    depth_spacy = []

    for i, (nugget, pos, ner, dep, depth) in enumerate(zip(examples["ner_tags"], examples["pos_spacy"], examples["ner_spacy"], examples["dep_spacy"], examples["depth_spacy"])):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        previous_word_idx = None
        nugget_ids = []
        ner_spacy_ids = []
        pos_spacy_ids = []
        dep_spacy_ids = []
        depth_spacy_ids = []

        for word_idx in word_ids:
            # Special tokens have a word id that is None. We set the label to -100 so they are automatically
            # ignored in the loss function.
            if word_idx is None:
                nugget_ids.append(-100)
                ner_spacy_ids.append(-100)
                pos_spacy_ids.append(-100)
                dep_spacy_ids.append(-100)
                depth_spacy_ids.append(-100)
            # We set the label for the first token of each word.
            elif word_idx != previous_word_idx:
                nugget_ids.append(nugget[word_idx])
                ner_spacy_ids.append(ner[word_idx])
                pos_spacy_ids.append(pos[word_idx])
                dep_spacy_ids.append(dep[word_idx])
                depth_spacy_ids.append(depth[word_idx])
            # For the other tokens in a word, we set the label to either the current label or -100, depending on
            # the label_all_tokens flag.
            else:
                nugget_ids.append(nugget[word_idx] if label_all_tokens else -100)
                ner_spacy_ids.append(ner[word_idx] if label_all_tokens else -100)
                pos_spacy_ids.append(pos[word_idx] if label_all_tokens else -100)
                dep_spacy_ids.append(dep[word_idx] if label_all_tokens else -100)
                depth_spacy_ids.append(depth[word_idx] if label_all_tokens else -100)
            previous_word_idx = word_idx

        nuggets.append(nugget_ids)
        ner_spacy.append(ner_spacy_ids)
        pos_spacy.append(pos_spacy_ids)
        dep_spacy.append(dep_spacy_ids)
        depth_spacy.append(depth_spacy_ids)

    tokenized_inputs["ner_tags"] = nuggets
    tokenized_inputs["pos_spacy"] = pos_spacy
    tokenized_inputs["ner_spacy"] = ner_spacy
    tokenized_inputs["dep_spacy"] = dep_spacy
    tokenized_inputs["depth_spacy"] = depth_spacy
    return tokenized_inputs