Cybersecurity-Knowledge-Graph / args_model_utils.py
cpi-connect's picture
Upload 18 files
4e38daf
raw
history blame
11.2 kB
import torch
import spacy
import en_core_web_sm
from torch import nn
import math
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
from transformers import AutoModel, TrainingArguments, Trainer, RobertaTokenizer, RobertaModel
from transformers import AutoTokenizer
model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
roberta_model = RobertaModel.from_pretrained(model_checkpoint).to(device)
nlp = en_core_web_sm.load()
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
event_nugget_tag_list = ["Databreach", "Ransom", "PatchVulnerability", "Phishing", "DiscoverVulnerability"]
arg_nugget_relative_pos_tag_list = ["before-same-sentence", "before-differ-sentence", "after-same-sentence", "after-differ-sentence"]
class CustomRobertaWithPOS(nn.Module):
def __init__(self, num_classes):
super(CustomRobertaWithPOS, self).__init__()
self.num_classes = num_classes
self.pos_embed = nn.Embedding(len(pos_spacy_tag_list), 16)
self.ner_embed = nn.Embedding(len(ner_spacy_tag_list), 8)
self.dep_embed = nn.Embedding(len(dep_spacy_tag_list), 8)
self.depth_embed = nn.Embedding(17, 8)
self.subtype_embed = nn.Embedding(len(event_nugget_tag_list), 2)
self.dist_embed = nn.Embedding(11, 6)
self.relative_pos_embed = nn.Embedding(len(arg_nugget_relative_pos_tag_list), 2)
self.roberta = roberta_model
self.dropout1 = nn.Dropout(0.2)
self.fc1 = nn.Linear(self.roberta.config.hidden_size + 50, num_classes)
def forward(self, input_ids, attention_mask, pos_spacy, ner_spacy, dep_spacy, depth_spacy, nearest_nugget_subtype, nearest_nugget_dist, arg_nugget_relative_pos):
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_output = outputs.last_hidden_state
pooler_output = outputs.pooler_output
pooler_output_unsqz = pooler_output.unsqueeze(1)
pooler_output_fin = pooler_output_unsqz.expand(-1, last_hidden_output.shape[1], -1)
pos_mask = pos_spacy != -100
pos_embed_masked = self.pos_embed(pos_spacy[pos_mask])
pos_embed = torch.zeros((pos_spacy.shape[0], pos_spacy.shape[1], 16), dtype=torch.float).to(device)
pos_embed[pos_mask] = pos_embed_masked
ner_mask = ner_spacy != -100
ner_embed_masked = self.ner_embed(ner_spacy[ner_mask])
ner_embed = torch.zeros((ner_spacy.shape[0], ner_spacy.shape[1], 8), dtype=torch.float).to(device)
ner_embed[ner_mask] = ner_embed_masked
dep_mask = dep_spacy != -100
dep_embed_masked = self.dep_embed(dep_spacy[dep_mask])
dep_embed = torch.zeros((dep_spacy.shape[0], dep_spacy.shape[1], 8), dtype=torch.float).to(device)
dep_embed[dep_mask] = dep_embed_masked
depth_mask = depth_spacy != -100
depth_embed_masked = self.depth_embed(depth_spacy[depth_mask])
depth_embed = torch.zeros((depth_spacy.shape[0], depth_spacy.shape[1], 8), dtype=torch.float).to(device)
depth_embed[dep_mask] = depth_embed_masked
nearest_nugget_subtype_mask = nearest_nugget_subtype != -100
nearest_nugget_subtype_embed_masked = self.subtype_embed(nearest_nugget_subtype[nearest_nugget_subtype_mask])
nearest_nugget_subtype_embed = torch.zeros((nearest_nugget_subtype.shape[0], nearest_nugget_subtype.shape[1], 2), dtype=torch.float).to(device)
nearest_nugget_subtype_embed[dep_mask] = nearest_nugget_subtype_embed_masked
nearest_nugget_dist_mask = nearest_nugget_dist != -100
nearest_nugget_dist_embed_masked = self.dist_embed(nearest_nugget_dist[nearest_nugget_dist_mask])
nearest_nugget_dist_embed = torch.zeros((nearest_nugget_dist.shape[0], nearest_nugget_dist.shape[1], 6), dtype=torch.float).to(device)
nearest_nugget_dist_embed[dep_mask] = nearest_nugget_dist_embed_masked
arg_nugget_relative_pos_mask = arg_nugget_relative_pos != -100
arg_nugget_relative_pos_embed_masked = self.relative_pos_embed(arg_nugget_relative_pos[arg_nugget_relative_pos_mask])
arg_nugget_relative_pos_embed = torch.zeros((arg_nugget_relative_pos.shape[0], arg_nugget_relative_pos.shape[1], 2), dtype=torch.float).to(device)
arg_nugget_relative_pos_embed[dep_mask] = arg_nugget_relative_pos_embed_masked
features_concat = torch.cat((last_hidden_output, pos_embed, ner_embed, dep_embed, depth_embed, nearest_nugget_subtype_embed, nearest_nugget_dist_embed, arg_nugget_relative_pos_embed), 2).to(device)
features_concat = self.dropout1(features_concat)
logits = self.fc1(features_concat)
return logits
def tokenize_and_align_labels_with_pos_ner_dep(examples, tokenizer, label_all_tokens = True):
tokenized_inputs = tokenizer(examples["tokens"], padding='max_length', truncation=True, is_split_into_words=True)
#tokenized_inputs.pop('input_ids')
ner_spacy = []
pos_spacy = []
dep_spacy = []
depth_spacy = []
nearest_nugget_subtype = []
nearest_nugget_dist = []
arg_nugget_relative_pos = []
for i, (pos, ner, dep, depth, subtype, dist, relative_pos) in enumerate(zip(examples["pos_spacy"],
examples["ner_spacy"],
examples["dep_spacy"],
examples["depth_spacy"],
examples["nearest_nugget_subtype"],
examples["nearest_nugget_dist"],
examples["arg_nugget_relative_pos"])):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
ner_spacy_ids = []
pos_spacy_ids = []
dep_spacy_ids = []
depth_spacy_ids = []
nearest_nugget_subtype_ids = []
nearest_nugget_dist_ids = []
arg_nugget_relative_pos_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
ner_spacy_ids.append(-100)
pos_spacy_ids.append(-100)
dep_spacy_ids.append(-100)
depth_spacy_ids.append(-100)
nearest_nugget_subtype_ids.append(-100)
nearest_nugget_dist_ids.append(-100)
arg_nugget_relative_pos_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
ner_spacy_ids.append(ner[word_idx])
pos_spacy_ids.append(pos[word_idx])
dep_spacy_ids.append(dep[word_idx])
depth_spacy_ids.append(depth[word_idx])
nearest_nugget_subtype_ids.append(subtype[word_idx])
nearest_nugget_dist_ids.append(dist[word_idx])
arg_nugget_relative_pos_ids.append(relative_pos[word_idx])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
ner_spacy_ids.append(ner[word_idx] if label_all_tokens else -100)
pos_spacy_ids.append(pos[word_idx] if label_all_tokens else -100)
dep_spacy_ids.append(dep[word_idx] if label_all_tokens else -100)
depth_spacy_ids.append(depth[word_idx] if label_all_tokens else -100)
nearest_nugget_subtype_ids.append(subtype[word_idx] if label_all_tokens else -100)
nearest_nugget_dist_ids.append(dist[word_idx] if label_all_tokens else -100)
arg_nugget_relative_pos_ids.append(relative_pos[word_idx] if label_all_tokens else -100)
previous_word_idx = word_idx
ner_spacy.append(ner_spacy_ids)
pos_spacy.append(pos_spacy_ids)
dep_spacy.append(dep_spacy_ids)
depth_spacy.append(depth_spacy_ids)
nearest_nugget_subtype.append(nearest_nugget_subtype_ids)
nearest_nugget_dist.append(nearest_nugget_dist_ids)
arg_nugget_relative_pos.append(arg_nugget_relative_pos_ids)
tokenized_inputs["pos_spacy"] = pos_spacy
tokenized_inputs["ner_spacy"] = ner_spacy
tokenized_inputs["dep_spacy"] = dep_spacy
tokenized_inputs["depth_spacy"] = depth_spacy
tokenized_inputs["nearest_nugget_subtype"] = nearest_nugget_subtype
tokenized_inputs["nearest_nugget_dist"] = nearest_nugget_dist
tokenized_inputs["arg_nugget_relative_pos"] = arg_nugget_relative_pos
return tokenized_inputs
def find_nearest_nugget_features(doc, start_idx, end_idx, event_nuggets):
nearest_subtype = None
nearest_dist = math.inf
relative_pos = None
mid_idx = (end_idx + start_idx) / 2
for nugget in event_nuggets:
mid_nugget_idx = (nugget["startOffset"] + nugget["endOffset"]) / 2
dist = abs(mid_nugget_idx - mid_idx)
if dist < nearest_dist:
nearest_dist = dist
nearest_subtype = nugget["subtype"]
for sent in doc.sents:
if between_idxs(mid_idx, sent.start_char, sent.end_char) and between_idxs(mid_nugget_idx, sent.start_char, sent.end_char):
if mid_idx < mid_nugget_idx:
relative_pos = "before-same-sentence"
else:
relative_pos = "after-same-sentence"
break
elif between_idxs(mid_nugget_idx, sent.start_char, sent.end_char) and mid_idx > mid_nugget_idx:
relative_pos = "after-differ-sentence"
break
elif between_idxs(mid_idx, sent.start_char, sent.end_char) and mid_idx < mid_nugget_idx:
relative_pos = "before-differ-sentence"
break
nearest_dist = int(min(10, nearest_dist // 20))
return nearest_subtype, nearest_dist, relative_pos
def find_dep_depth(token):
depth = 0
current_token = token
while current_token.head != current_token:
depth += 1
current_token = current_token.head
return min(depth, 16)
def between_idxs(idx, start_idx, end_idx):
return idx >= start_idx and idx <= end_idx