Upload PPO LunarLander-v2 trained agent Dani
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.79 +/- 20.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f215d946c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f215d946ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f215d946d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f215d946dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f215d946e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f215d946ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f215d946f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f215d94a040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f215d94a0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f215d94a160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f215d94a1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f215d94a280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f215d9437c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679426139920774118, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB48T2cf4k+stGCvruBWL44BuC8LTW2vQAAAAAAAAAAgBmZvYqAPDzGqIk9uaNYvkymsjuM/QS9AAAAAAAAAACGPhE+RLb7PsP2472JIc6+jbcoPeOYEr0AAAAAAAAAAM3jNb0z2Kk/HqXpvjyS676XkCO78C3jvQAAAAAAAAAAmrXlvYGXKT9T32I8Zg+evpkyVb3AzB09AAAAAAAAAADN9Ki8Cel2PQoxkjsddRa+RrTQvO6/OrwAAAAAAAAAALMB+b0KRUG7n0SKu9RI1rk4iY88A93WOgAAgD8AAAAAk4oqPpoioT66oYC+vhuAvgrdNr1fHJi9AAAAAAAAAADNYM88wFudPmxLOb4rAZG+RZ5Vvfgc7bwAAAAAAAAAAHO+oj4L7+Y++s9avsydiL5FUoM92F75vAAAAAAAAAAAZhy4PRSwpbrFu2Y4whpfM0kNBLrzc4S3AACAPwAAAACzwoa9j2Yrumbaj7b1GoGxmJN4uis/qTUAAIA/AACAPyYcqD2PjgO65bWwuzG2HDgH/Dm7AZBEtwAAgD8AAAAALRYjPkgwtTu7TW87gToKOSGTSj1SaJO6AACAPwAAgD+mGN29PrudPj6EGjqUkIu+9VjfvAIXRLsAAAAAAAAAAJosQL2JnpE+UdiSvYTLPb5hVm29CzHvPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4XzqWGUacUCUhpRSlIwBbJRNqgGMAXSUR0CSS7OR1X/6dX2UKGgGaAloD0MI1A5/TdYLbkCUhpRSlGgVTdYCaBZHQJJMMxBVuJl1fZQoaAZoCWgPQwiQSxx5oK9wQJSGlFKUaBVNcQJoFkdAkk1W8/UvwnV9lChoBmgJaA9DCO1GH/PBv3BAlIaUUpRoFU0uAWgWR0CSTj7DEWIodX2UKGgGaAloD0MIsfhNYWU6cUCUhpRSlGgVTY0DaBZHQJJPXtRekYZ1fZQoaAZoCWgPQwiNRdPZyQJsQJSGlFKUaBVNXAFoFkdAklA43aSLZXV9lChoBmgJaA9DCCujkc8rE2FAlIaUUpRoFU3oA2gWR0CSUhrNGEwndX2UKGgGaAloD0MIUkfH1cgPbUCUhpRSlGgVTdkDaBZHQJJTh0Qsf7t1fZQoaAZoCWgPQwhoPBHEeZZkQJSGlFKUaBVN6ANoFkdAklVyjL0SRXV9lChoBmgJaA9DCOEp5Eq9WmRAlIaUUpRoFU3oA2gWR0CSV2/MnqmkdX2UKGgGaAloD0MIacnjafncb0CUhpRSlGgVTakCaBZHQJJbvkzXSSh1fZQoaAZoCWgPQwg/O+C6IupxQJSGlFKUaBVNuQFoFkdAklvOCTUy6HV9lChoBmgJaA9DCCmzQSYZR3FAlIaUUpRoFU0lAWgWR0CSXMSwW3z+dX2UKGgGaAloD0MIL8GpD6Q4ZECUhpRSlGgVTegDaBZHQJJdq2UjcEh1fZQoaAZoCWgPQwgz/KcbaMJwQJSGlFKUaBVNagFoFkdAkmgh1X/5tXV9lChoBmgJaA9DCPchb7n6K3FAlIaUUpRoFU0JAmgWR0CSbD6u4gA7dX2UKGgGaAloD0MIIqZEEn0vcUCUhpRSlGgVTZgBaBZHQJJuc065oXd1fZQoaAZoCWgPQwht/fSfNRpeQJSGlFKUaBVN6ANoFkdAknHTTWoWHnV9lChoBmgJaA9DCC8UsB2M4HBAlIaUUpRoFU26AmgWR0CSeRWQwK0EdX2UKGgGaAloD0MIc58cBcgPcUCUhpRSlGgVTRMCaBZHQJJ5NUYKpkx1fZQoaAZoCWgPQwgJ3pBGhc5wQJSGlFKUaBVNAgJoFkdAknqP+jua4XV9lChoBmgJaA9DCBZLkXylbGRAlIaUUpRoFU3oA2gWR0CSfdWqLjxTdX2UKGgGaAloD0MI+ie4WBHgcUCUhpRSlGgVTfYCaBZHQJKA1aIN3GJ1fZQoaAZoCWgPQwiwARHiyvFFQJSGlFKUaBVLrmgWR0CSg77Qb+98dX2UKGgGaAloD0MImIV2TjOGb0CUhpRSlGgVTV4CaBZHQJKFObnX/YJ1fZQoaAZoCWgPQwj9n8N8ucpxQJSGlFKUaBVN6ANoFkdAkpRj2alUInV9lChoBmgJaA9DCKHZdW/FrXFAlIaUUpRoFU2DAmgWR0CSlQHtnf2sdX2UKGgGaAloD0MIs5jYfJzocUCUhpRSlGgVTccBaBZHQJKVuSDAaeh1fZQoaAZoCWgPQwhWm/9XHdVtQJSGlFKUaBVNEgFoFkdAkpch4QjD9HV9lChoBmgJaA9DCDTbFfpgyWtAlIaUUpRoFU22AmgWR0CSmD8dgfEGdX2UKGgGaAloD0MICvZf56a1YUCUhpRSlGgVTegDaBZHQJKY4OlO45N1fZQoaAZoCWgPQwiCjevfddlsQJSGlFKUaBVN7QJoFkdAkpkwVfu1GHV9lChoBmgJaA9DCE2jycUY/l5AlIaUUpRoFU3oA2gWR0CSma40dilSdX2UKGgGaAloD0MI3nNgOUIwbUCUhpRSlGgVTVUCaBZHQJKaCpXIU8F1fZQoaAZoCWgPQwghXAGFujtxQJSGlFKUaBVNMwJoFkdAkpwlev6j33V9lChoBmgJaA9DCB1aZDvfsG9AlIaUUpRoFU14AWgWR0CSolzSCvovdX2UKGgGaAloD0MIIOup1dddakCUhpRSlGgVTZECaBZHQJKlBsqJ/G51fZQoaAZoCWgPQwgDsAERoiFwQJSGlFKUaBVNGgFoFkdAkqpMYVIqb3V9lChoBmgJaA9DCI2chT2tnnBAlIaUUpRoFU0jAWgWR0CSrOTR6WxAdX2UKGgGaAloD0MI6KOMuIAEcECUhpRSlGgVTZMCaBZHQJKvIU34sVd1fZQoaAZoCWgPQwjcupunuuJwQJSGlFKUaBVNmwFoFkdAkq+p9qk/KXV9lChoBmgJaA9DCG2umufI63FAlIaUUpRoFU33AWgWR0CSsFZYPoV3dX2UKGgGaAloD0MIfSWQEruqcECUhpRSlGgVTYcBaBZHQJKy5emelKt1fZQoaAZoCWgPQwi9j6M5svFuQJSGlFKUaBVNnAJoFkdAkrPrhWHUMHV9lChoBmgJaA9DCFr2JLA5RHBAlIaUUpRoFU0tAmgWR0CSuF1yeZogdX2UKGgGaAloD0MId9Zuu9CecUCUhpRSlGgVTdkBaBZHQJK42eHzpX91fZQoaAZoCWgPQwgpz7wc9lByQJSGlFKUaBVNXQJoFkdAkryBoEjgRHV9lChoBmgJaA9DCFjhlo+kdERAlIaUUpRoFU0AAWgWR0CSvTD4QBgedX2UKGgGaAloD0MIcoxkjxCDcUCUhpRSlGgVTQcBaBZHQJK+Bj7Q9id1fZQoaAZoCWgPQwijBtMw/O5xQJSGlFKUaBVN2AFoFkdAksB+T/yXlnV9lChoBmgJaA9DCDOoNjjRBXBAlIaUUpRoFU0lAmgWR0CSxqOD8LrpdX2UKGgGaAloD0MIJ1DEIgaobkCUhpRSlGgVTaIBaBZHQJLHF64UeuF1fZQoaAZoCWgPQwibWrbW11JwQJSGlFKUaBVNVgNoFkdAkscxcZ9/jXV9lChoBmgJaA9DCJmaBG9IlXBAlIaUUpRoFU3iAWgWR0CSx/GkN4JNdX2UKGgGaAloD0MIBg39Exx8cECUhpRSlGgVTcgCaBZHQJLIABKcurZ1fZQoaAZoCWgPQwiGAraD0U5wQJSGlFKUaBVNJQFoFkdAksiRgmZ3LXV9lChoBmgJaA9DCLYr9MEy5m1AlIaUUpRoFU0uAmgWR0CSyd8wYcebdX2UKGgGaAloD0MImfOMfclibkCUhpRSlGgVTaMBaBZHQJLJ/Uy57PZ1fZQoaAZoCWgPQwgFpWjl3sFgQJSGlFKUaBVN6ANoFkdAkstJ9iMHbHV9lChoBmgJaA9DCH3ogvoWy3BAlIaUUpRoFU2yAWgWR0CS22rhisnzdX2UKGgGaAloD0MIggAZOjaUcECUhpRSlGgVTSoCaBZHQJLck67ulXR1fZQoaAZoCWgPQwhDOjyEsQFxQJSGlFKUaBVNmwFoFkdAkt6k4m1IAnV9lChoBmgJaA9DCEOSWb1DuGJAlIaUUpRoFU3oA2gWR0CS4TEpRXOodX2UKGgGaAloD0MIURN9PophcUCUhpRSlGgVTQMBaBZHQJLhVtbcGkh1fZQoaAZoCWgPQwiDpiVWxoRyQJSGlFKUaBVNDwFoFkdAkuNjvqkdm3V9lChoBmgJaA9DCHkHeNICCHFAlIaUUpRoFU1NAWgWR0CS5bLSNOuadX2UKGgGaAloD0MIIt46/zZ8cECUhpRSlGgVTfUBaBZHQJLmVUCJXQt1fZQoaAZoCWgPQwjulXmrrl5yQJSGlFKUaBVNagFoFkdAkug+KsMiKXV9lChoBmgJaA9DCN4FSgostm5AlIaUUpRoFU0wAWgWR0CS6ICWNWELdX2UKGgGaAloD0MImfG20iv8cUCUhpRSlGgVTXYBaBZHQJLq05q/M4d1fZQoaAZoCWgPQwjKpIY2gOxxQJSGlFKUaBVNFwFoFkdAku3Yeo1k2HV9lChoBmgJaA9DCIWxhSBH/nBAlIaUUpRoFU1ZAmgWR0CS7pkwN9YwdX2UKGgGaAloD0MIPj+MEB6tbkCUhpRSlGgVTUUBaBZHQJLu/oQnQY11fZQoaAZoCWgPQwitw9FVui1MQJSGlFKUaBVL22gWR0CS8TiW3Sa3dX2UKGgGaAloD0MIpgwc0FIJcECUhpRSlGgVTT0BaBZHQJLyq+8Gs3h1fZQoaAZoCWgPQwgOFk7SfHVtQJSGlFKUaBVNWAFoFkdAkvU2U8mrsHV9lChoBmgJaA9DCMlYbf7fgW9AlIaUUpRoFU0wAWgWR0CS9XQfp2U0dX2UKGgGaAloD0MI1F+vsODPcUCUhpRSlGgVTSoCaBZHQJL2UAKfFrF1fZQoaAZoCWgPQwhRn+QOmwpxQJSGlFKUaBVN6wFoFkdAkvqimdiDunV9lChoBmgJaA9DCJNVEW6yYW9AlIaUUpRoFU0QAWgWR0CS+sjjaPCEdX2UKGgGaAloD0MIcH1Yb9QMb0CUhpRSlGgVTSIBaBZHQJL61kK/mDF1fZQoaAZoCWgPQwiQvHMogxhwQJSGlFKUaBVNDwFoFkdAkvsncpLEk3V9lChoBmgJaA9DCBNhw9PrrnBAlIaUUpRoFU0pAmgWR0CS+5PSDyvtdX2UKGgGaAloD0MIp+ZygyGmbECUhpRSlGgVTZ8BaBZHQJL7+ebutwJ1fZQoaAZoCWgPQwhh3uNME3FtQJSGlFKUaBVNtQFoFkdAkvzuEdvKl3V9lChoBmgJaA9DCL4W9N4YzV1AlIaUUpRoFU3oA2gWR0CS/V1kUbkwdX2UKGgGaAloD0MIcAuW6gLZcUCUhpRSlGgVTUADaBZHQJL+mdTYNAl1fZQoaAZoCWgPQwhCB13CYX1wQJSGlFKUaBVNOwFoFkdAkv7e76Hj63V9lChoBmgJaA9DCHXHYpvU7G5AlIaUUpRoFU05AWgWR0CTAAhlUZNxdX2UKGgGaAloD0MIfotOllqMbkCUhpRSlGgVTUABaBZHQJMCwVuaWop1fZQoaAZoCWgPQwgoY3yYvVZxQJSGlFKUaBVNMAJoFkdAkwMUT101ZXV9lChoBmgJaA9DCMHhBREp2W9AlIaUUpRoFU2HAWgWR0CTBdQgs9SudX2UKGgGaAloD0MIO99PjZeFckCUhpRSlGgVTRQBaBZHQJMGD1Gsmv51fZQoaAZoCWgPQwgQecvVz89wQJSGlFKUaBVNFQFoFkdAkwZ+fmLcbnV9lChoBmgJaA9DCEIlrmPce29AlIaUUpRoFU0oAWgWR0CTBved07r+dX2UKGgGaAloD0MIHOviNtoicECUhpRSlGgVTYcBaBZHQJMHBzOoo/l1fZQoaAZoCWgPQwijztxDgglwQJSGlFKUaBVNOwFoFkdAkweflU6xPnV9lChoBmgJaA9DCE29bhGYpGNAlIaUUpRoFU3oA2gWR0CTB8o1UEPldX2UKGgGaAloD0MI7PZZZab5bECUhpRSlGgVTSMBaBZHQJMH44ZMtbt1fZQoaAZoCWgPQwgEH4MVJ+xwQJSGlFKUaBVNcgFoFkdAkwvtuxbB43VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d04bea3e5dfe5fa5f6cc9e91e47f6985ea104e608ccf2442913c6a602be9aed
|
3 |
+
size 146918
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f215d946c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f215d946ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f215d946d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f215d946dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f215d946e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f215d946ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f215d946f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f215d94a040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f215d94a0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f215d94a160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f215d94a1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f215d94a280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f215d9437c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679426139920774118,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIB48T2cf4k+stGCvruBWL44BuC8LTW2vQAAAAAAAAAAgBmZvYqAPDzGqIk9uaNYvkymsjuM/QS9AAAAAAAAAACGPhE+RLb7PsP2472JIc6+jbcoPeOYEr0AAAAAAAAAAM3jNb0z2Kk/HqXpvjyS676XkCO78C3jvQAAAAAAAAAAmrXlvYGXKT9T32I8Zg+evpkyVb3AzB09AAAAAAAAAADN9Ki8Cel2PQoxkjsddRa+RrTQvO6/OrwAAAAAAAAAALMB+b0KRUG7n0SKu9RI1rk4iY88A93WOgAAgD8AAAAAk4oqPpoioT66oYC+vhuAvgrdNr1fHJi9AAAAAAAAAADNYM88wFudPmxLOb4rAZG+RZ5Vvfgc7bwAAAAAAAAAAHO+oj4L7+Y++s9avsydiL5FUoM92F75vAAAAAAAAAAAZhy4PRSwpbrFu2Y4whpfM0kNBLrzc4S3AACAPwAAAACzwoa9j2Yrumbaj7b1GoGxmJN4uis/qTUAAIA/AACAPyYcqD2PjgO65bWwuzG2HDgH/Dm7AZBEtwAAgD8AAAAALRYjPkgwtTu7TW87gToKOSGTSj1SaJO6AACAPwAAgD+mGN29PrudPj6EGjqUkIu+9VjfvAIXRLsAAAAAAAAAAJosQL2JnpE+UdiSvYTLPb5hVm29CzHvPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4XzqWGUacUCUhpRSlIwBbJRNqgGMAXSUR0CSS7OR1X/6dX2UKGgGaAloD0MI1A5/TdYLbkCUhpRSlGgVTdYCaBZHQJJMMxBVuJl1fZQoaAZoCWgPQwiQSxx5oK9wQJSGlFKUaBVNcQJoFkdAkk1W8/UvwnV9lChoBmgJaA9DCO1GH/PBv3BAlIaUUpRoFU0uAWgWR0CSTj7DEWIodX2UKGgGaAloD0MIsfhNYWU6cUCUhpRSlGgVTY0DaBZHQJJPXtRekYZ1fZQoaAZoCWgPQwiNRdPZyQJsQJSGlFKUaBVNXAFoFkdAklA43aSLZXV9lChoBmgJaA9DCCujkc8rE2FAlIaUUpRoFU3oA2gWR0CSUhrNGEwndX2UKGgGaAloD0MIUkfH1cgPbUCUhpRSlGgVTdkDaBZHQJJTh0Qsf7t1fZQoaAZoCWgPQwhoPBHEeZZkQJSGlFKUaBVN6ANoFkdAklVyjL0SRXV9lChoBmgJaA9DCOEp5Eq9WmRAlIaUUpRoFU3oA2gWR0CSV2/MnqmkdX2UKGgGaAloD0MIacnjafncb0CUhpRSlGgVTakCaBZHQJJbvkzXSSh1fZQoaAZoCWgPQwg/O+C6IupxQJSGlFKUaBVNuQFoFkdAklvOCTUy6HV9lChoBmgJaA9DCCmzQSYZR3FAlIaUUpRoFU0lAWgWR0CSXMSwW3z+dX2UKGgGaAloD0MIL8GpD6Q4ZECUhpRSlGgVTegDaBZHQJJdq2UjcEh1fZQoaAZoCWgPQwgz/KcbaMJwQJSGlFKUaBVNagFoFkdAkmgh1X/5tXV9lChoBmgJaA9DCPchb7n6K3FAlIaUUpRoFU0JAmgWR0CSbD6u4gA7dX2UKGgGaAloD0MIIqZEEn0vcUCUhpRSlGgVTZgBaBZHQJJuc065oXd1fZQoaAZoCWgPQwht/fSfNRpeQJSGlFKUaBVN6ANoFkdAknHTTWoWHnV9lChoBmgJaA9DCC8UsB2M4HBAlIaUUpRoFU26AmgWR0CSeRWQwK0EdX2UKGgGaAloD0MIc58cBcgPcUCUhpRSlGgVTRMCaBZHQJJ5NUYKpkx1fZQoaAZoCWgPQwgJ3pBGhc5wQJSGlFKUaBVNAgJoFkdAknqP+jua4XV9lChoBmgJaA9DCBZLkXylbGRAlIaUUpRoFU3oA2gWR0CSfdWqLjxTdX2UKGgGaAloD0MI+ie4WBHgcUCUhpRSlGgVTfYCaBZHQJKA1aIN3GJ1fZQoaAZoCWgPQwiwARHiyvFFQJSGlFKUaBVLrmgWR0CSg77Qb+98dX2UKGgGaAloD0MImIV2TjOGb0CUhpRSlGgVTV4CaBZHQJKFObnX/YJ1fZQoaAZoCWgPQwj9n8N8ucpxQJSGlFKUaBVN6ANoFkdAkpRj2alUInV9lChoBmgJaA9DCKHZdW/FrXFAlIaUUpRoFU2DAmgWR0CSlQHtnf2sdX2UKGgGaAloD0MIs5jYfJzocUCUhpRSlGgVTccBaBZHQJKVuSDAaeh1fZQoaAZoCWgPQwhWm/9XHdVtQJSGlFKUaBVNEgFoFkdAkpch4QjD9HV9lChoBmgJaA9DCDTbFfpgyWtAlIaUUpRoFU22AmgWR0CSmD8dgfEGdX2UKGgGaAloD0MICvZf56a1YUCUhpRSlGgVTegDaBZHQJKY4OlO45N1fZQoaAZoCWgPQwiCjevfddlsQJSGlFKUaBVN7QJoFkdAkpkwVfu1GHV9lChoBmgJaA9DCE2jycUY/l5AlIaUUpRoFU3oA2gWR0CSma40dilSdX2UKGgGaAloD0MI3nNgOUIwbUCUhpRSlGgVTVUCaBZHQJKaCpXIU8F1fZQoaAZoCWgPQwghXAGFujtxQJSGlFKUaBVNMwJoFkdAkpwlev6j33V9lChoBmgJaA9DCB1aZDvfsG9AlIaUUpRoFU14AWgWR0CSolzSCvovdX2UKGgGaAloD0MIIOup1dddakCUhpRSlGgVTZECaBZHQJKlBsqJ/G51fZQoaAZoCWgPQwgDsAERoiFwQJSGlFKUaBVNGgFoFkdAkqpMYVIqb3V9lChoBmgJaA9DCI2chT2tnnBAlIaUUpRoFU0jAWgWR0CSrOTR6WxAdX2UKGgGaAloD0MI6KOMuIAEcECUhpRSlGgVTZMCaBZHQJKvIU34sVd1fZQoaAZoCWgPQwjcupunuuJwQJSGlFKUaBVNmwFoFkdAkq+p9qk/KXV9lChoBmgJaA9DCG2umufI63FAlIaUUpRoFU33AWgWR0CSsFZYPoV3dX2UKGgGaAloD0MIfSWQEruqcECUhpRSlGgVTYcBaBZHQJKy5emelKt1fZQoaAZoCWgPQwi9j6M5svFuQJSGlFKUaBVNnAJoFkdAkrPrhWHUMHV9lChoBmgJaA9DCFr2JLA5RHBAlIaUUpRoFU0tAmgWR0CSuF1yeZogdX2UKGgGaAloD0MId9Zuu9CecUCUhpRSlGgVTdkBaBZHQJK42eHzpX91fZQoaAZoCWgPQwgpz7wc9lByQJSGlFKUaBVNXQJoFkdAkryBoEjgRHV9lChoBmgJaA9DCFjhlo+kdERAlIaUUpRoFU0AAWgWR0CSvTD4QBgedX2UKGgGaAloD0MIcoxkjxCDcUCUhpRSlGgVTQcBaBZHQJK+Bj7Q9id1fZQoaAZoCWgPQwijBtMw/O5xQJSGlFKUaBVN2AFoFkdAksB+T/yXlnV9lChoBmgJaA9DCDOoNjjRBXBAlIaUUpRoFU0lAmgWR0CSxqOD8LrpdX2UKGgGaAloD0MIJ1DEIgaobkCUhpRSlGgVTaIBaBZHQJLHF64UeuF1fZQoaAZoCWgPQwibWrbW11JwQJSGlFKUaBVNVgNoFkdAkscxcZ9/jXV9lChoBmgJaA9DCJmaBG9IlXBAlIaUUpRoFU3iAWgWR0CSx/GkN4JNdX2UKGgGaAloD0MIBg39Exx8cECUhpRSlGgVTcgCaBZHQJLIABKcurZ1fZQoaAZoCWgPQwiGAraD0U5wQJSGlFKUaBVNJQFoFkdAksiRgmZ3LXV9lChoBmgJaA9DCLYr9MEy5m1AlIaUUpRoFU0uAmgWR0CSyd8wYcebdX2UKGgGaAloD0MImfOMfclibkCUhpRSlGgVTaMBaBZHQJLJ/Uy57PZ1fZQoaAZoCWgPQwgFpWjl3sFgQJSGlFKUaBVN6ANoFkdAkstJ9iMHbHV9lChoBmgJaA9DCH3ogvoWy3BAlIaUUpRoFU2yAWgWR0CS22rhisnzdX2UKGgGaAloD0MIggAZOjaUcECUhpRSlGgVTSoCaBZHQJLck67ulXR1fZQoaAZoCWgPQwhDOjyEsQFxQJSGlFKUaBVNmwFoFkdAkt6k4m1IAnV9lChoBmgJaA9DCEOSWb1DuGJAlIaUUpRoFU3oA2gWR0CS4TEpRXOodX2UKGgGaAloD0MIURN9PophcUCUhpRSlGgVTQMBaBZHQJLhVtbcGkh1fZQoaAZoCWgPQwiDpiVWxoRyQJSGlFKUaBVNDwFoFkdAkuNjvqkdm3V9lChoBmgJaA9DCHkHeNICCHFAlIaUUpRoFU1NAWgWR0CS5bLSNOuadX2UKGgGaAloD0MIIt46/zZ8cECUhpRSlGgVTfUBaBZHQJLmVUCJXQt1fZQoaAZoCWgPQwjulXmrrl5yQJSGlFKUaBVNagFoFkdAkug+KsMiKXV9lChoBmgJaA9DCN4FSgostm5AlIaUUpRoFU0wAWgWR0CS6ICWNWELdX2UKGgGaAloD0MImfG20iv8cUCUhpRSlGgVTXYBaBZHQJLq05q/M4d1fZQoaAZoCWgPQwjKpIY2gOxxQJSGlFKUaBVNFwFoFkdAku3Yeo1k2HV9lChoBmgJaA9DCIWxhSBH/nBAlIaUUpRoFU1ZAmgWR0CS7pkwN9YwdX2UKGgGaAloD0MIPj+MEB6tbkCUhpRSlGgVTUUBaBZHQJLu/oQnQY11fZQoaAZoCWgPQwitw9FVui1MQJSGlFKUaBVL22gWR0CS8TiW3Sa3dX2UKGgGaAloD0MIpgwc0FIJcECUhpRSlGgVTT0BaBZHQJLyq+8Gs3h1fZQoaAZoCWgPQwgOFk7SfHVtQJSGlFKUaBVNWAFoFkdAkvU2U8mrsHV9lChoBmgJaA9DCMlYbf7fgW9AlIaUUpRoFU0wAWgWR0CS9XQfp2U0dX2UKGgGaAloD0MI1F+vsODPcUCUhpRSlGgVTSoCaBZHQJL2UAKfFrF1fZQoaAZoCWgPQwhRn+QOmwpxQJSGlFKUaBVN6wFoFkdAkvqimdiDunV9lChoBmgJaA9DCJNVEW6yYW9AlIaUUpRoFU0QAWgWR0CS+sjjaPCEdX2UKGgGaAloD0MIcH1Yb9QMb0CUhpRSlGgVTSIBaBZHQJL61kK/mDF1fZQoaAZoCWgPQwiQvHMogxhwQJSGlFKUaBVNDwFoFkdAkvsncpLEk3V9lChoBmgJaA9DCBNhw9PrrnBAlIaUUpRoFU0pAmgWR0CS+5PSDyvtdX2UKGgGaAloD0MIp+ZygyGmbECUhpRSlGgVTZ8BaBZHQJL7+ebutwJ1fZQoaAZoCWgPQwhh3uNME3FtQJSGlFKUaBVNtQFoFkdAkvzuEdvKl3V9lChoBmgJaA9DCL4W9N4YzV1AlIaUUpRoFU3oA2gWR0CS/V1kUbkwdX2UKGgGaAloD0MIcAuW6gLZcUCUhpRSlGgVTUADaBZHQJL+mdTYNAl1fZQoaAZoCWgPQwhCB13CYX1wQJSGlFKUaBVNOwFoFkdAkv7e76Hj63V9lChoBmgJaA9DCHXHYpvU7G5AlIaUUpRoFU05AWgWR0CTAAhlUZNxdX2UKGgGaAloD0MIfotOllqMbkCUhpRSlGgVTUABaBZHQJMCwVuaWop1fZQoaAZoCWgPQwgoY3yYvVZxQJSGlFKUaBVNMAJoFkdAkwMUT101ZXV9lChoBmgJaA9DCMHhBREp2W9AlIaUUpRoFU2HAWgWR0CTBdQgs9SudX2UKGgGaAloD0MIO99PjZeFckCUhpRSlGgVTRQBaBZHQJMGD1Gsmv51fZQoaAZoCWgPQwgQecvVz89wQJSGlFKUaBVNFQFoFkdAkwZ+fmLcbnV9lChoBmgJaA9DCEIlrmPce29AlIaUUpRoFU0oAWgWR0CTBved07r+dX2UKGgGaAloD0MIHOviNtoicECUhpRSlGgVTYcBaBZHQJMHBzOoo/l1fZQoaAZoCWgPQwijztxDgglwQJSGlFKUaBVNOwFoFkdAkweflU6xPnV9lChoBmgJaA9DCE29bhGYpGNAlIaUUpRoFU3oA2gWR0CTB8o1UEPldX2UKGgGaAloD0MI7PZZZab5bECUhpRSlGgVTSMBaBZHQJMH44ZMtbt1fZQoaAZoCWgPQwgEH4MVJ+xwQJSGlFKUaBVNcgFoFkdAkwvtuxbB43VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:741b50b3085c6b7e6897ee3498d0be1f4a0d8d105350ca9f88bdd33e60d1e73c
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e586b2de8d097114db4ac3d41cf4b5e67937ec0e7bb21dcce7bb4e54c1a6eb09
|
3 |
+
size 43265
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (247 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.7937950491612, "std_reward": 20.938999234770368, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T19:37:02.029906"}
|