Guanzheng commited on
Commit
961d152
1 Parent(s): 71d09d9

Create modeling_llama.py

Browse files
Files changed (1) hide show
  1. modeling_llama.py +1015 -0
modeling_llama.py ADDED
@@ -0,0 +1,1015 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from .configuration_clex import CLEXLlamaConfig
34
+ from .clex_layer import LlamaCLEXScalingRotaryEmbedding
35
+ from einops import rearrange
36
+ import importlib.metadata
37
+ import importlib.util
38
+
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
43
+ # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
44
+ package_exists = importlib.util.find_spec(pkg_name) is not None
45
+ package_version = "N/A"
46
+ if package_exists:
47
+ try:
48
+ package_version = importlib.metadata.version(pkg_name)
49
+ package_exists = True
50
+ except importlib.metadata.PackageNotFoundError:
51
+ package_exists = False
52
+ logger.info(f"Detected {pkg_name} version {package_version}")
53
+ if return_version:
54
+ return package_exists, package_version
55
+ else:
56
+ return package_exists
57
+
58
+ def is_flash_attn_available():
59
+ if not _is_package_available("torch", return_version=True):
60
+ return False
61
+
62
+ # Let's add an extra check to see if cuda is available
63
+
64
+ return _is_package_available("flash_attn") and torch.cuda.is_available()
65
+
66
+
67
+
68
+
69
+
70
+
71
+ _CONFIG_FOR_DOC = "CLEXLlamaConfig"
72
+
73
+
74
+
75
+
76
+
77
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
78
+ def _make_causal_mask(
79
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
80
+ ):
81
+ """
82
+ Make causal mask used for bi-directional self-attention.
83
+ """
84
+ bsz, tgt_len = input_ids_shape
85
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
86
+ mask_cond = torch.arange(mask.size(-1), device=device)
87
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
88
+ mask = mask.to(dtype)
89
+
90
+ if past_key_values_length > 0:
91
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
92
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
96
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
97
+ """
98
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
99
+ """
100
+ bsz, src_len = mask.size()
101
+ tgt_len = tgt_len if tgt_len is not None else src_len
102
+
103
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
104
+
105
+ inverted_mask = 1.0 - expanded_mask
106
+
107
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
108
+
109
+
110
+ class LlamaRMSNorm(nn.Module):
111
+ def __init__(self, hidden_size, eps=1e-6):
112
+ """
113
+ LlamaRMSNorm is equivalent to T5LayerNorm
114
+ """
115
+ super().__init__()
116
+ self.weight = nn.Parameter(torch.ones(hidden_size))
117
+ self.variance_epsilon = eps
118
+
119
+ def forward(self, hidden_states):
120
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
121
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
122
+
123
+ # convert into half-precision if necessary
124
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
125
+ hidden_states = hidden_states.to(self.weight.dtype)
126
+
127
+ return self.weight * hidden_states
128
+
129
+
130
+ class LlamaRotaryEmbedding(torch.nn.Module):
131
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
132
+ super().__init__()
133
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
134
+ self.register_buffer("inv_freq", inv_freq)
135
+
136
+ # Build here to make `torch.jit.trace` work.
137
+ self.max_seq_len_cached = max_position_embeddings
138
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
139
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
140
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
141
+ emb = torch.cat((freqs, freqs), dim=-1)
142
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
143
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
144
+
145
+ def forward(self, x, seq_len=None):
146
+ # x: [bs, num_attention_heads, seq_len, head_size]
147
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
148
+ if seq_len > self.max_seq_len_cached:
149
+ self.max_seq_len_cached = seq_len
150
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
151
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
152
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
153
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
154
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
155
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
156
+ return (
157
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
158
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
159
+ )
160
+
161
+
162
+ def rotate_half(x):
163
+ """Rotates half the hidden dims of the input."""
164
+ x1 = x[..., : x.shape[-1] // 2]
165
+ x2 = x[..., x.shape[-1] // 2 :]
166
+ return torch.cat((-x2, x1), dim=-1)
167
+
168
+
169
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, key_position_ids):
170
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
171
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
172
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
173
+ cos_q = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
174
+ sin_q = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
175
+
176
+ cos_k = cos[key_position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
177
+ sin_k = sin[key_position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
178
+ q_embed = (q * cos_q) + (rotate_half(q) * sin_q)
179
+ k_embed = (k * cos_k) + (rotate_half(k) * sin_k)
180
+ return q_embed, k_embed
181
+
182
+
183
+ class LlamaMLP(nn.Module):
184
+ def __init__(
185
+ self,
186
+ hidden_size: int,
187
+ intermediate_size: int,
188
+ hidden_act: str,
189
+ ):
190
+ super().__init__()
191
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
192
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
193
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
194
+ self.act_fn = ACT2FN[hidden_act]
195
+
196
+ def forward(self, x):
197
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
198
+
199
+
200
+ class LlamaAttention(nn.Module):
201
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
202
+
203
+ def __init__(self, config: CLEXLlamaConfig):
204
+ super().__init__()
205
+ self.config = config
206
+ self.hidden_size = config.hidden_size
207
+ self.num_heads = config.num_attention_heads
208
+ self.head_dim = self.hidden_size // self.num_heads
209
+ self.max_position_embeddings = config.max_position_embeddings
210
+ self.log_scale = config.log_scale
211
+ if (self.head_dim * self.num_heads) != self.hidden_size:
212
+ raise ValueError(
213
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
214
+ f" and `num_heads`: {self.num_heads})."
215
+ )
216
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
217
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
218
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
219
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
220
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
221
+
222
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
223
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
224
+
225
+ def flash_attn_forward(
226
+ self,
227
+ qkv: torch.Tensor,
228
+ key_padding_mask: Optional[torch.Tensor] = None,
229
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
230
+ """Input shape: Batch x Time x Channel
231
+
232
+ attention_mask: [bsz, q_len]
233
+ """
234
+ if is_flash_attn_available():
235
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func, flash_attn_qkvpacked_func, flash_attn_with_kvcache
236
+ # from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
237
+ from flash_attn.bert_padding import unpad_input, pad_input
238
+ bsz, q_len, *_ = qkv.size()
239
+
240
+ if key_padding_mask is None:
241
+ # qkv = rearrange(qkv, "b s ... -> (b s) ...")
242
+ max_s = q_len
243
+ cu_q_lens = torch.arange(
244
+ 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
245
+ )
246
+ output = flash_attn_qkvpacked_func(
247
+ qkv, 0.0, softmax_scale=None, causal=True
248
+ )
249
+ else:
250
+ nheads = qkv.shape[-2]
251
+ x = rearrange(qkv, "b s three h d -> b s (three h d)")
252
+ x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
253
+ x_unpad = rearrange(
254
+ x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads
255
+ )
256
+ output_unpad = flash_attn_varlen_qkvpacked_func(
257
+ x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
258
+ )
259
+ output = rearrange(
260
+ pad_input(
261
+ rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len
262
+ ),
263
+ "b s (h d) -> b s h d",
264
+ h=nheads,
265
+ )
266
+ return self.o_proj(rearrange(output, "b s h d -> b s (h d)"))
267
+
268
+ def forward(
269
+ self,
270
+ hidden_states: torch.Tensor,
271
+ attention_mask: Optional[torch.Tensor] = None,
272
+ position_ids: Optional[torch.LongTensor] = None,
273
+ pack_cos_sin = None,
274
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
275
+ output_attentions: bool = False,
276
+ use_cache: bool = False,
277
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
278
+ bsz, q_len, _ = hidden_states.size()
279
+
280
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
281
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
282
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
283
+
284
+ kv_seq_len = key_states.shape[-2]
285
+
286
+ if past_key_value is not None:
287
+ kv_seq_len += past_key_value[0].shape[-2]
288
+ cache_key_states = torch.cat([past_key_value[0], key_states], dim=2)
289
+ else:
290
+ cache_key_states = key_states
291
+
292
+ if pack_cos_sin is not None:
293
+ cos, sin = pack_cos_sin.to(query_states.device)
294
+ else:
295
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
296
+ key_position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=position_ids.device).unsqueeze(0).view(-1, kv_seq_len)
297
+ query_states, key_states = apply_rotary_pos_emb(query_states, cache_key_states, cos, sin, position_ids, key_position_ids)
298
+
299
+ if past_key_value is not None:
300
+ # reuse k, v, self_attention
301
+ # key_states = torch.cat([past_key_value[0], key_states], dim=2)
302
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
303
+
304
+ past_key_value = (cache_key_states, value_states) if use_cache else None
305
+
306
+ use_flashattn = self.config.use_flashattn and is_flash_attn_available()
307
+
308
+ if self.log_scale:
309
+ log_n = torch.log(torch.tensor(kv_seq_len*1.0)).to(query_states.device, dtype=query_states.dtype) / \
310
+ torch.log(torch.tensor(self.config.max_position_embeddings)).to(query_states.device, dtype=query_states.dtype)
311
+ query_states = query_states * log_n
312
+
313
+
314
+ if query_states.shape[-2] == 1 or query_states.shape[-2] != key_states.shape[-2] and not use_flashattn:
315
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
316
+
317
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
318
+ raise ValueError(
319
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
320
+ f" {attn_weights.size()}"
321
+ )
322
+
323
+ if attention_mask is not None:
324
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
325
+ raise ValueError(
326
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
327
+ )
328
+ attn_weights = attn_weights + attention_mask
329
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
330
+
331
+ # upcast attention to fp32
332
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
333
+ attn_output = torch.matmul(attn_weights, value_states)
334
+
335
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
336
+ raise ValueError(
337
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
338
+ f" {attn_output.size()}"
339
+ )
340
+
341
+ attn_output = attn_output.transpose(1, 2)
342
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
343
+
344
+ attn_output = self.o_proj(attn_output)
345
+
346
+ if not output_attentions:
347
+ attn_weights = None
348
+
349
+ return attn_output, attn_weights, past_key_value
350
+ # use flash attention
351
+ elif past_key_value is not None:
352
+ from flash_attn.flash_attn_interface import flash_attn_with_kvcache
353
+ output = flash_attn_with_kvcache(
354
+ query_states.transpose(1, 2),
355
+ key_states.transpose(1, 2),
356
+ value_states.transpose(1, 2),
357
+ cache_seqlens=kv_seq_len,
358
+ causal=True,
359
+ )
360
+ attn_output = self.o_proj(rearrange(output, "b s h d -> b s (h d)"))
361
+ else:
362
+ qkv = torch.stack(
363
+ [query_states, key_states, value_states], dim=2
364
+ ) # [bsz, nh, 3, q_len, hd]
365
+ qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd]
366
+ attn_output = self.flash_attn_forward(qkv)
367
+ return attn_output, None, past_key_value
368
+
369
+
370
+ class LlamaDecoderLayer(nn.Module):
371
+ def __init__(self, config: CLEXLlamaConfig):
372
+ super().__init__()
373
+ self.hidden_size = config.hidden_size
374
+ self.self_attn = LlamaAttention(config=config)
375
+ self.mlp = LlamaMLP(
376
+ hidden_size=self.hidden_size,
377
+ intermediate_size=config.intermediate_size,
378
+ hidden_act=config.hidden_act,
379
+ )
380
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
381
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
382
+
383
+ def forward(
384
+ self,
385
+ hidden_states: torch.Tensor,
386
+ attention_mask: Optional[torch.Tensor] = None,
387
+ position_ids: Optional[torch.LongTensor] = None,
388
+ pack_cos_sin=None,
389
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
390
+ output_attentions: Optional[bool] = False,
391
+ use_cache: Optional[bool] = False,
392
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
393
+ """
394
+ Args:
395
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
396
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
397
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
398
+ output_attentions (`bool`, *optional*):
399
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
400
+ returned tensors for more detail.
401
+ use_cache (`bool`, *optional*):
402
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
403
+ (see `past_key_values`).
404
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
405
+ """
406
+
407
+ residual = hidden_states
408
+
409
+ hidden_states = self.input_layernorm(hidden_states)
410
+
411
+ # Self Attention
412
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
413
+ hidden_states=hidden_states,
414
+ attention_mask=attention_mask,
415
+ position_ids=position_ids,
416
+ pack_cos_sin=pack_cos_sin,
417
+ past_key_value=past_key_value,
418
+ output_attentions=output_attentions,
419
+ use_cache=use_cache,
420
+ )
421
+ hidden_states = residual + hidden_states
422
+
423
+ # Fully Connected
424
+ residual = hidden_states
425
+ hidden_states = self.post_attention_layernorm(hidden_states)
426
+ hidden_states = self.mlp(hidden_states)
427
+ hidden_states = residual + hidden_states
428
+
429
+ outputs = (hidden_states,)
430
+
431
+ if output_attentions:
432
+ outputs += (self_attn_weights,)
433
+
434
+ if use_cache:
435
+ outputs += (present_key_value,)
436
+
437
+ return outputs
438
+
439
+
440
+ LLAMA_START_DOCSTRING = r"""
441
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
442
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
443
+ etc.)
444
+
445
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
446
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
447
+ and behavior.
448
+
449
+ Parameters:
450
+ config ([`CLEXLlamaConfig`]):
451
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
452
+ load the weights associated with the model, only the configuration. Check out the
453
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
454
+ """
455
+
456
+
457
+ @add_start_docstrings(
458
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
459
+ LLAMA_START_DOCSTRING,
460
+ )
461
+ class LlamaPreTrainedModel(PreTrainedModel):
462
+ config_class = CLEXLlamaConfig
463
+ base_model_prefix = "model"
464
+ supports_gradient_checkpointing = True
465
+ _no_split_modules = ["LlamaDecoderLayer"]
466
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
467
+ _keep_in_fp32_modules = ["model.clex_layer.proj_func.ode_up_proj", "model.clex_layer.proj_func.ode_down_proj", "model.clex_layer.inv_freq"]
468
+
469
+ def _init_weights(self, module):
470
+ std = self.config.initializer_range
471
+ if isinstance(module, nn.Linear):
472
+ module.weight.data.normal_(mean=0.0, std=std)
473
+ if module.bias is not None:
474
+ module.bias.data.zero_()
475
+ elif isinstance(module, nn.Embedding):
476
+ module.weight.data.normal_(mean=0.0, std=std)
477
+ if module.padding_idx is not None:
478
+ module.weight.data[module.padding_idx].zero_()
479
+
480
+ def _set_gradient_checkpointing(self, module, value=False):
481
+ if isinstance(module, LlamaModel):
482
+ module.gradient_checkpointing = value
483
+
484
+
485
+ LLAMA_INPUTS_DOCSTRING = r"""
486
+ Args:
487
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
488
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
489
+ it.
490
+
491
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
492
+ [`PreTrainedTokenizer.__call__`] for details.
493
+
494
+ [What are input IDs?](../glossary#input-ids)
495
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
496
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
497
+
498
+ - 1 for tokens that are **not masked**,
499
+ - 0 for tokens that are **masked**.
500
+
501
+ [What are attention masks?](../glossary#attention-mask)
502
+
503
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
504
+ [`PreTrainedTokenizer.__call__`] for details.
505
+
506
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
507
+ `past_key_values`).
508
+
509
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
510
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
511
+ information on the default strategy.
512
+
513
+ - 1 indicates the head is **not masked**,
514
+ - 0 indicates the head is **masked**.
515
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
516
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
517
+ config.n_positions - 1]`.
518
+
519
+ [What are position IDs?](../glossary#position-ids)
520
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
521
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
522
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
523
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
524
+
525
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
526
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
527
+
528
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
529
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
530
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
531
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
532
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
533
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
534
+ model's internal embedding lookup matrix.
535
+ use_cache (`bool`, *optional*):
536
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
537
+ `past_key_values`).
538
+ output_attentions (`bool`, *optional*):
539
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
540
+ tensors for more detail.
541
+ output_hidden_states (`bool`, *optional*):
542
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
543
+ more detail.
544
+ return_dict (`bool`, *optional*):
545
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
546
+ """
547
+
548
+
549
+ @add_start_docstrings(
550
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
551
+ LLAMA_START_DOCSTRING,
552
+ )
553
+ class LlamaModel(LlamaPreTrainedModel):
554
+ """
555
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
556
+
557
+ Args:
558
+ config: CLEXLlamaConfig
559
+ """
560
+
561
+ def __init__(self, config: CLEXLlamaConfig):
562
+ super().__init__(config)
563
+ self.padding_idx = config.pad_token_id
564
+ self.vocab_size = config.vocab_size
565
+
566
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
567
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
568
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
569
+ head_dim = config.hidden_size // config.num_attention_heads
570
+ if config.rope_scaling["type"] == "clex":
571
+ self.clex_layer = LlamaCLEXScalingRotaryEmbedding(head_dim, config.max_position_embeddings, config.rope_scaling)
572
+ self.gradient_checkpointing = False
573
+ # Initialize weights and apply final processing
574
+ self.post_init()
575
+
576
+
577
+ def get_input_embeddings(self):
578
+ return self.embed_tokens
579
+
580
+ def set_input_embeddings(self, value):
581
+ self.embed_tokens = value
582
+
583
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
584
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
585
+ # create causal mask
586
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
587
+ combined_attention_mask = None
588
+ if input_shape[-1] > 1:
589
+ combined_attention_mask = _make_causal_mask(
590
+ input_shape,
591
+ inputs_embeds.dtype,
592
+ device=inputs_embeds.device,
593
+ past_key_values_length=past_key_values_length,
594
+ )
595
+
596
+ if attention_mask is not None:
597
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
598
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
599
+ inputs_embeds.device
600
+ )
601
+ combined_attention_mask = (
602
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
603
+ )
604
+
605
+ return combined_attention_mask
606
+
607
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
608
+ def forward(
609
+ self,
610
+ input_ids: torch.LongTensor = None,
611
+ attention_mask: Optional[torch.Tensor] = None,
612
+ position_ids: Optional[torch.LongTensor] = None,
613
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
614
+ inputs_embeds: Optional[torch.FloatTensor] = None,
615
+ use_cache: Optional[bool] = None,
616
+ output_attentions: Optional[bool] = None,
617
+ output_hidden_states: Optional[bool] = None,
618
+ return_dict: Optional[bool] = None,
619
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
620
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
621
+ output_hidden_states = (
622
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
623
+ )
624
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
625
+
626
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
627
+
628
+ # retrieve input_ids and inputs_embeds
629
+ if input_ids is not None and inputs_embeds is not None:
630
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
631
+ elif input_ids is not None:
632
+ batch_size, seq_length = input_ids.shape
633
+ elif inputs_embeds is not None:
634
+ batch_size, seq_length, _ = inputs_embeds.shape
635
+ else:
636
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
637
+
638
+ seq_length_with_past = seq_length
639
+ past_key_values_length = 0
640
+
641
+ if past_key_values is not None:
642
+ past_key_values_length = past_key_values[0][0].shape[2]
643
+ seq_length_with_past = seq_length_with_past + past_key_values_length
644
+
645
+ if position_ids is None:
646
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
647
+ position_ids = torch.arange(
648
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
649
+ )
650
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
651
+ else:
652
+ position_ids = position_ids.view(-1, seq_length).long()
653
+
654
+ if inputs_embeds is None:
655
+ inputs_embeds = self.embed_tokens(input_ids)
656
+ # embed positions
657
+ if attention_mask is None:
658
+ attention_mask = torch.ones(
659
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
660
+ )
661
+ attention_mask = self._prepare_decoder_attention_mask(
662
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
663
+ )
664
+ # attention_mask = None
665
+
666
+
667
+ hidden_states = inputs_embeds
668
+
669
+ if self.gradient_checkpointing and self.training:
670
+ if use_cache:
671
+ logger.warning_once(
672
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
673
+ )
674
+ use_cache = False
675
+
676
+ # decoder layers
677
+ all_hidden_states = () if output_hidden_states else None
678
+ all_self_attns = () if output_attentions else None
679
+ next_decoder_cache = () if use_cache else None
680
+
681
+ pack_cos_sin = None
682
+ if self.config.rope_scaling["type"] == "clex":
683
+ pack_cos_sin = self.clex_layer(inputs_embeds.device, inputs_embeds.dtype, seq_length_with_past, self.training)
684
+
685
+ for idx, decoder_layer in enumerate(self.layers):
686
+ if output_hidden_states:
687
+ all_hidden_states += (hidden_states,)
688
+
689
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
690
+
691
+ if self.gradient_checkpointing and self.training:
692
+
693
+ def create_custom_forward(module):
694
+ def custom_forward(*inputs):
695
+ # None for past_key_value
696
+ return module(*inputs, output_attentions, None)
697
+
698
+ return custom_forward
699
+
700
+ layer_outputs = torch.utils.checkpoint.checkpoint(
701
+ create_custom_forward(decoder_layer),
702
+ hidden_states,
703
+ attention_mask,
704
+ position_ids,
705
+ pack_cos_sin,
706
+ None,
707
+ )
708
+ else:
709
+ layer_outputs = decoder_layer(
710
+ hidden_states,
711
+ attention_mask=attention_mask,
712
+ position_ids=position_ids,
713
+ pack_cos_sin=pack_cos_sin,
714
+ past_key_value=past_key_value,
715
+ output_attentions=output_attentions,
716
+ use_cache=use_cache,
717
+ )
718
+
719
+ hidden_states = layer_outputs[0]
720
+
721
+ if use_cache:
722
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
723
+
724
+ if output_attentions:
725
+ all_self_attns += (layer_outputs[1],)
726
+
727
+ hidden_states = self.norm(hidden_states)
728
+
729
+ # add hidden states from the last decoder layer
730
+ if output_hidden_states:
731
+ all_hidden_states += (hidden_states,)
732
+
733
+ next_cache = next_decoder_cache if use_cache else None
734
+ if not return_dict:
735
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
736
+ return BaseModelOutputWithPast(
737
+ last_hidden_state=hidden_states,
738
+ past_key_values=next_cache,
739
+ hidden_states=all_hidden_states,
740
+ attentions=all_self_attns,
741
+ )
742
+
743
+
744
+ class LlamaForCausalLM(LlamaPreTrainedModel):
745
+ def __init__(self, config):
746
+ super().__init__(config)
747
+ self.model = LlamaModel(config)
748
+
749
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
750
+
751
+ # Initialize weights and apply final processing
752
+ self.post_init()
753
+
754
+ def get_input_embeddings(self):
755
+ return self.model.embed_tokens
756
+
757
+ def set_input_embeddings(self, value):
758
+ self.model.embed_tokens = value
759
+
760
+ def get_output_embeddings(self):
761
+ return self.lm_head
762
+
763
+ def set_output_embeddings(self, new_embeddings):
764
+ self.lm_head = new_embeddings
765
+
766
+ def set_decoder(self, decoder):
767
+ self.model = decoder
768
+
769
+ def get_decoder(self):
770
+ return self.model
771
+
772
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
773
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
774
+ def forward(
775
+ self,
776
+ input_ids: torch.LongTensor = None,
777
+ attention_mask: Optional[torch.Tensor] = None,
778
+ position_ids: Optional[torch.LongTensor] = None,
779
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
780
+ inputs_embeds: Optional[torch.FloatTensor] = None,
781
+ labels: Optional[torch.LongTensor] = None,
782
+ use_cache: Optional[bool] = None,
783
+ output_attentions: Optional[bool] = None,
784
+ output_hidden_states: Optional[bool] = None,
785
+ return_dict: Optional[bool] = None,
786
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
787
+ r"""
788
+ Args:
789
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
790
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
791
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
792
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
793
+
794
+ Returns:
795
+
796
+ Example:
797
+
798
+ ```python
799
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
800
+
801
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
802
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
803
+
804
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
805
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
806
+
807
+ >>> # Generate
808
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
809
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
810
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
811
+ ```"""
812
+
813
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
814
+ output_hidden_states = (
815
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
816
+ )
817
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
818
+
819
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
820
+ outputs = self.model(
821
+ input_ids=input_ids,
822
+ attention_mask=attention_mask,
823
+ position_ids=position_ids,
824
+ past_key_values=past_key_values,
825
+ inputs_embeds=inputs_embeds,
826
+ use_cache=use_cache,
827
+ output_attentions=output_attentions,
828
+ output_hidden_states=output_hidden_states,
829
+ return_dict=return_dict,
830
+ )
831
+
832
+ hidden_states = outputs[0]
833
+ logits = self.lm_head(hidden_states)
834
+
835
+ loss = None
836
+ if labels is not None:
837
+ # Shift so that tokens < n predict n
838
+ shift_logits = logits[..., :-1, :].contiguous()
839
+ shift_labels = labels[..., 1:].contiguous()
840
+ # Flatten the tokens
841
+ loss_fct = CrossEntropyLoss()
842
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
843
+ shift_labels = shift_labels.view(-1)
844
+ # Enable model parallelism
845
+ shift_labels = shift_labels.to(shift_logits.device)
846
+ loss = loss_fct(shift_logits, shift_labels)
847
+ if not return_dict:
848
+ output = (logits,) + outputs[1:]
849
+ return (loss,) + output if loss is not None else output
850
+ return CausalLMOutputWithPast(
851
+ loss=loss,
852
+ logits=logits,
853
+ past_key_values=outputs.past_key_values,
854
+ hidden_states=outputs.hidden_states,
855
+ attentions=outputs.attentions,
856
+ )
857
+
858
+ def prepare_inputs_for_generation(
859
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
860
+ ):
861
+ if past_key_values:
862
+ input_ids = input_ids[:, -1:]
863
+
864
+ position_ids = kwargs.get("position_ids", None)
865
+ if attention_mask is not None and position_ids is None:
866
+ # create position_ids on the fly for batch generation
867
+ position_ids = attention_mask.long().cumsum(-1) - 1
868
+ position_ids.masked_fill_(attention_mask == 0, 1)
869
+ if past_key_values:
870
+ position_ids = position_ids[:, -1].unsqueeze(-1)
871
+
872
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
873
+ if inputs_embeds is not None and past_key_values is None:
874
+ model_inputs = {"inputs_embeds": inputs_embeds}
875
+ else:
876
+ model_inputs = {"input_ids": input_ids}
877
+
878
+ model_inputs.update(
879
+ {
880
+ "position_ids": position_ids,
881
+ "past_key_values": past_key_values,
882
+ "use_cache": kwargs.get("use_cache"),
883
+ "attention_mask": attention_mask,
884
+ }
885
+ )
886
+ return model_inputs
887
+
888
+ @staticmethod
889
+ def _reorder_cache(past_key_values, beam_idx):
890
+ reordered_past = ()
891
+ for layer_past in past_key_values:
892
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
893
+ return reordered_past
894
+
895
+
896
+ @add_start_docstrings(
897
+ """
898
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
899
+
900
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
901
+ (e.g. GPT-2) do.
902
+
903
+ Since it does classification on the last token, it requires to know the position of the last token. If a
904
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
905
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
906
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
907
+ each row of the batch).
908
+ """,
909
+ LLAMA_START_DOCSTRING,
910
+ )
911
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
912
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
913
+
914
+ def __init__(self, config):
915
+ super().__init__(config)
916
+ self.num_labels = config.num_labels
917
+ self.model = LlamaModel(config)
918
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
919
+
920
+ # Initialize weights and apply final processing
921
+ self.post_init()
922
+
923
+ def get_input_embeddings(self):
924
+ return self.model.embed_tokens
925
+
926
+ def set_input_embeddings(self, value):
927
+ self.model.embed_tokens = value
928
+
929
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
930
+ def forward(
931
+ self,
932
+ input_ids: torch.LongTensor = None,
933
+ attention_mask: Optional[torch.Tensor] = None,
934
+ position_ids: Optional[torch.LongTensor] = None,
935
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
936
+ inputs_embeds: Optional[torch.FloatTensor] = None,
937
+ labels: Optional[torch.LongTensor] = None,
938
+ use_cache: Optional[bool] = None,
939
+ output_attentions: Optional[bool] = None,
940
+ output_hidden_states: Optional[bool] = None,
941
+ return_dict: Optional[bool] = None,
942
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
943
+ r"""
944
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
945
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
946
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
947
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
948
+ """
949
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
950
+
951
+ transformer_outputs = self.model(
952
+ input_ids,
953
+ attention_mask=attention_mask,
954
+ position_ids=position_ids,
955
+ past_key_values=past_key_values,
956
+ inputs_embeds=inputs_embeds,
957
+ use_cache=use_cache,
958
+ output_attentions=output_attentions,
959
+ output_hidden_states=output_hidden_states,
960
+ return_dict=return_dict,
961
+ )
962
+ hidden_states = transformer_outputs[0]
963
+ logits = self.score(hidden_states)
964
+
965
+ if input_ids is not None:
966
+ batch_size = input_ids.shape[0]
967
+ else:
968
+ batch_size = inputs_embeds.shape[0]
969
+
970
+ if self.config.pad_token_id is None and batch_size != 1:
971
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
972
+ if self.config.pad_token_id is None:
973
+ sequence_lengths = -1
974
+ else:
975
+ if input_ids is not None:
976
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
977
+ else:
978
+ sequence_lengths = -1
979
+
980
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
981
+
982
+ loss = None
983
+ if labels is not None:
984
+ labels = labels.to(logits.device)
985
+ if self.config.problem_type is None:
986
+ if self.num_labels == 1:
987
+ self.config.problem_type = "regression"
988
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
989
+ self.config.problem_type = "single_label_classification"
990
+ else:
991
+ self.config.problem_type = "multi_label_classification"
992
+
993
+ if self.config.problem_type == "regression":
994
+ loss_fct = MSELoss()
995
+ if self.num_labels == 1:
996
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
997
+ else:
998
+ loss = loss_fct(pooled_logits, labels)
999
+ elif self.config.problem_type == "single_label_classification":
1000
+ loss_fct = CrossEntropyLoss()
1001
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1002
+ elif self.config.problem_type == "multi_label_classification":
1003
+ loss_fct = BCEWithLogitsLoss()
1004
+ loss = loss_fct(pooled_logits, labels)
1005
+ if not return_dict:
1006
+ output = (pooled_logits,) + transformer_outputs[1:]
1007
+ return ((loss,) + output) if loss is not None else output
1008
+
1009
+ return SequenceClassifierOutputWithPast(
1010
+ loss=loss,
1011
+ logits=pooled_logits,
1012
+ past_key_values=transformer_outputs.past_key_values,
1013
+ hidden_states=transformer_outputs.hidden_states,
1014
+ attentions=transformer_outputs.attentions,
1015
+ )