File size: 7,507 Bytes
4004e51 3d68d44 4004e51 3d68d44 4004e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: apache-2.0
datasets:
- OpenGVLab/VideoChat2-IT
- Lin-Chen/ShareGPT4V
- liuhaotian/LLaVA-Instruct-150K
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: visual-question-answering
tags:
- multimodal large language model
- large video-language model
---
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63913b120cf6b11c487ca31d/ROs4bHIp4zJ7g7vzgUycu.png" width="150" style="margin-bottom: 0.2;"/>
<p>
<h3 align="center"><a href="https://arxiv.org/abs/2406.07476">VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</a></h3>
<h5 align="center"> If you like our project, please give us a star β on <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2">Github</a> for the latest update. </h2>
<p align="center"><video src="https://cdn-uploads.huggingface.co/production/uploads/63913b120cf6b11c487ca31d/Wj7GuqQ0CB9JRoPo6_GoH.webm" width="800"></p>
## π° News
* **[2024.10.15]** Release checkpoints of [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) and [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F)
* **[2024.08.14]** Release checkpoints of [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) and [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B)
* **[2024.07.30]** Release checkpoints of [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) and [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B).
* **[2024.06.25]** π₯π₯ As of Jun 25, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [MLVU Leaderboard](https://github.com/JUNJIE99/MLVU?tab=readme-ov-file#trophy-mini-leaderboard).
* **[2024.06.18]** π₯π₯ As of Jun 18, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [VideoMME Leaderboard](https://video-mme.github.io/home_page.html#leaderboard).
* **[2024.06.17]** ππ Update technical report with the latest results and the missing references. If you have works closely related to VideoLLaMA 2 but not mentioned in the paper, feel free to let us know.
* **[2024.06.14]** π₯π₯ [Online Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) is available.
* **[2024.06.03]** Release training, evaluation, and serving codes of VideoLLaMA 2.
## π Model Zoo
| Model Name | Type | Visual Encoder | Language Decoder | # Training Frames |
|:-------------------|:--------------:|:----------------|:------------------|:----------------------:|
| [VideoLLaMA2-7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
| [VideoLLaMA2-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
| [VideoLLaMA2-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
| [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
| [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
| [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
| [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
| [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
| [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) | Base | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
| [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) (**This Checkpoint**) | Chat | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
## π Main Results
### Multi-Choice Video QA & Video Captioning
<p><img src="https://cdn-uploads.huggingface.co/production/uploads/63913b120cf6b11c487ca31d/Z81Dl2MeVlg8wLbYOyTvI.png" width="800" "/></p>
### Open-Ended Video QA
<p><img src="https://cdn-uploads.huggingface.co/production/uploads/63913b120cf6b11c487ca31d/UoAr7SjbPSPe1z23HBsUh.png" width="800" "/></p>
## π€ Inference with VideoLLaMA2
```python
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
def inference():
disable_torch_init()
# Video Inference
modal = 'video'
modal_path = 'assets/cat_and_chicken.mp4'
instruct = 'What animals are in the video, what are they doing, and how does the video feel?'
# Image Inference
modal = 'image'
modal_path = 'assets/sora.png'
instruct = 'What is the woman wearing, what is she doing, and how does the image feel?'
model_path = 'DAMO-NLP-SG/VideoLLaMA2-7B-16F'
model, processor, tokenizer = model_init(model_path)
output = mm_infer(processor[modal](modal_path), instruct, model=model, tokenizer=tokenizer, do_sample=False, modal=modal)
print(output)
if __name__ == "__main__":
inference()
```
## Citation
If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
```bibtex
@article{damonlpsg2024videollama2,
title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
journal={arXiv preprint arXiv:2406.07476},
year={2024},
url = {https://arxiv.org/abs/2406.07476}
}
@article{damonlpsg2023videollama,
title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
author = {Zhang, Hang and Li, Xin and Bing, Lidong},
journal = {arXiv preprint arXiv:2306.02858},
year = {2023},
url = {https://arxiv.org/abs/2306.02858}
}
```
|