DBMe's picture
Upload 19 files
6be08fb verified
raw
history blame
6.17 kB
# Sample YAML file for configuration.
# Comment and uncomment values as needed. Every value has a default within the application.
# This file serves to be a drop in for config.yml
# Unless specified in the comments, DO NOT put these options in quotes!
# You can use https://www.yamllint.com/ if you want to check your YAML formatting.
# Options for networking
network:
# The IP to host on (default: 127.0.0.1).
# Use 0.0.0.0 to expose on all network adapters
host: 0.0.0.0
# The port to host on (default: 5000)
port: 5000
# Disable HTTP token authenticaion with requests
# WARNING: This will make your instance vulnerable!
# Turn on this option if you are ONLY connecting from localhost
disable_auth: False
# Options for logging
logging:
# Enable prompt logging (default: False)
prompt: False
# Enable generation parameter logging (default: False)
generation_params: False
# Options for sampling
sampling:
# Override preset name. Find this in the sampler-overrides folder (default: None)
# This overrides default fallbacks for sampler values that are passed to the API
# Server-side overrides are NOT needed by default
# WARNING: Using this can result in a generation speed penalty
#override_preset:
# Options for development and experimentation
developer:
# Skips exllamav2 version check (default: False)
# It's highly recommended to update your dependencies rather than enabling this flag
# WARNING: Don't set this unless you know what you're doing!
#unsafe_launch: False
# Disable all request streaming (default: False)
# A kill switch for turning off SSE in the API server
#disable_request_streaming: False
# Enable the torch CUDA malloc backend (default: False)
# This can save a few MBs of VRAM, but has a risk of errors. Use at your own risk.
cuda_malloc_backend: True
# Options for model overrides and loading
model:
# Overrides the directory to look for models (default: models)
# Windows users, DO NOT put this path in quotes! This directory will be invalid otherwise.
model_dir: models
# An initial model to load. Make sure the model is located in the model directory!
# A model can be loaded later via the API.
# REQUIRED: This must be filled out to load a model on startup!
model_name: Tess-v2.5.2-Qwen2-72B-safetensors_exl2_5.0bpw
# Sends dummy model names when the models endpoint is queried
# Enable this if the program is looking for a specific OAI model
#use_dummy_models: False
# The below parameters apply only if model_name is set
# Max sequence length (default: Empty)
# Fetched from the model's base sequence length in config.json by default
max_seq_len: 19968
# Overrides base model context length (default: Empty)
# WARNING: Don't set this unless you know what you're doing!
# Again, do NOT use this for configuring context length, use max_seq_len above ^
# Only use this if the model's base sequence length in config.json is incorrect (ex. Mistral 7B)
#override_base_seq_len:
# Automatically allocate resources to GPUs (default: True)
# NOTE: Not parsed for single GPU users
gpu_split_auto: True
# Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0)
# This is represented as an array of MB per GPU used
autosplit_reserve: [6]
# An integer array of GBs of vram to split between GPUs (default: [])
# NOTE: Not parsed for single GPU users
#gpu_split: [20.6, 24]
# Rope scale (default: 1.0)
# Same thing as compress_pos_emb
# Only use if your model was trained on long context with rope (check config.json)
# Leave blank to pull the value from the model
#rope_scale: 1.0
# Rope alpha (default: 1.0)
# Same thing as alpha_value
# Leave blank to automatically calculate alpha
#rope_alpha: 1.0
# Disable Flash-attention 2. Set to True for GPUs lower than Nvidia's 3000 series. (default: False)
#no_flash_attention: False
# Enable different cache modes for VRAM savings (slight performance hit).
# Possible values FP16, FP8, Q4. (default: FP16)
cache_mode: Q4
# Chunk size for prompt ingestion. A lower value reduces VRAM usage at the cost of ingestion speed (default: 2048)
# NOTE: Effects vary depending on the model. An ideal value is between 512 and 4096
chunk_size: 2048
# Set the prompt template for this model. If empty, attempts to look for the model's chat template. (default: None)
# If a model contains multiple templates in its tokenizer_config.json, set prompt_template to the name
# of the template you want to use.s
# NOTE: Only works with chat completion message lists!
#prompt_template:
# Number of experts to use PER TOKEN. Fetched from the model's config.json if not specified (default: Empty)
# WARNING: Don't set this unless you know what you're doing!
# NOTE: For MoE models (ex. Mixtral) only!
#num_experts_per_token:
# Enables CFG support (default: False)
# WARNING: This flag disables Flash Attention! (a stopgap fix until it's fixed in upstream)
#use_cfg: False
# Enables fasttensors to possibly increase model loading speeds (default: False)
#fasttensors: true
# Options for draft models (speculative decoding). This will use more VRAM!
#draft:
# Overrides the directory to look for draft (default: models)
#draft_model_dir: models
# An initial draft model to load. Make sure this model is located in the model directory!
# A draft model can be loaded later via the API.
#draft_model_name: A model name
# Rope scale for draft models (default: 1.0)
# Same thing as compress_pos_emb
# Only use if your draft model was trained on long context with rope (check config.json)
#draft_rope_scale: 1.0
# Rope alpha for draft model (default: 1.0)
# Same thing as alpha_value
# Leave blank to automatically calculate alpha value
#draft_rope_alpha: 1.0
# Options for loras
#lora:
# Overrides the directory to look for loras (default: loras)
#lora_dir: loras
# List of loras to load and associated scaling factors (default: 1.0). Comment out unused entries or add more rows as needed.
#loras:
#- name: lora1
# scaling: 1.0