--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: DL_Audio_Hatespeech_text_classification_trainer_push results: [] widget: - text: "Democrats using African-Americans again." example_title: "Non-Hate Speech Example" - text: "Holy fuck this girl's trash, what a cunt." example_title: "Hate Speech Example" --- # DL_Audio_Hatespeech_text_classification_trainer_push This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9977 - Accuracy: 0.7737 - Recall: 0.8118 - Precision: 0.7526 - F1: 0.7811 And the following results on the test set: - Loss: 1.0640 - Accuracy: 0.7544 - Recall: 0.7930 - Precision: 0.7406 - F1: 0.7659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4863 | 0.9935 | 77 | 0.4678 | 0.7701 | 0.7421 | 0.7841 | 0.7625 | | 0.3935 | 2.0 | 155 | 0.4595 | 0.7834 | 0.7340 | 0.8124 | 0.7712 | | 0.2792 | 2.9935 | 232 | 0.5285 | 0.7850 | 0.7291 | 0.8188 | 0.7713 | | 0.1408 | 4.0 | 310 | 0.7130 | 0.7785 | 0.7940 | 0.7684 | 0.7810 | | 0.0945 | 4.9935 | 387 | 0.8230 | 0.7806 | 0.7551 | 0.7937 | 0.7739 | | 0.0541 | 6.0 | 465 | 0.9977 | 0.7737 | 0.8118 | 0.7526 | 0.7811 | | 0.0331 | 6.9935 | 542 | 1.1107 | 0.7753 | 0.7859 | 0.7678 | 0.7768 | | 0.0151 | 8.0 | 620 | 1.1703 | 0.7789 | 0.7543 | 0.7915 | 0.7724 | | 0.0106 | 8.9935 | 697 | 1.2741 | 0.7785 | 0.7616 | 0.7864 | 0.7738 | | 0.0051 | 9.9355 | 770 | 1.2964 | 0.7753 | 0.7851 | 0.7683 | 0.7766 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1