File size: 39,677 Bytes
e09186c
 
 
 
 
 
1236deb
e09186c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b295b
e09186c
 
 
 
 
 
 
 
 
 
c410176
e09186c
 
 
 
 
 
 
 
 
 
 
 
4c307a8
40cd04a
e09186c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e88597e
e09186c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- RAG
model-index:
- name: Dmeta-embedding
  results:
  - task:
      type: STS
    dataset:
      type: C-MTEB/AFQMC
      name: MTEB AFQMC
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 65.60825224706932
    - type: cos_sim_spearman
      value: 71.12862586297193
    - type: euclidean_pearson
      value: 70.18130275750404
    - type: euclidean_spearman
      value: 71.12862586297193
    - type: manhattan_pearson
      value: 70.14470398075396
    - type: manhattan_spearman
      value: 71.05226975911737
  - task:
      type: STS
    dataset:
      type: C-MTEB/ATEC
      name: MTEB ATEC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 65.52386345655479
    - type: cos_sim_spearman
      value: 64.64245253181382
    - type: euclidean_pearson
      value: 73.20157662981914
    - type: euclidean_spearman
      value: 64.64245253178956
    - type: manhattan_pearson
      value: 73.22837571756348
    - type: manhattan_spearman
      value: 64.62632334391418
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (zh)
      config: zh
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 44.925999999999995
    - type: f1
      value: 42.82555191308971
  - task:
      type: STS
    dataset:
      type: C-MTEB/BQ
      name: MTEB BQ
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 71.35236446393156
    - type: cos_sim_spearman
      value: 72.29629643702184
    - type: euclidean_pearson
      value: 70.94570179874498
    - type: euclidean_spearman
      value: 72.29629297226953
    - type: manhattan_pearson
      value: 70.84463025501125
    - type: manhattan_spearman
      value: 72.24527021975821
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/CLSClusteringP2P
      name: MTEB CLSClusteringP2P
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 40.24232916894152
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/CLSClusteringS2S
      name: MTEB CLSClusteringS2S
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 39.167806226929706
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv1-reranking
      name: MTEB CMedQAv1
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 88.48837920106357
    - type: mrr
      value: 90.36861111111111
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv2-reranking
      name: MTEB CMedQAv2
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 89.17878171657071
    - type: mrr
      value: 91.35805555555555
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CmedqaRetrieval
      name: MTEB CmedqaRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 25.751
    - type: map_at_10
      value: 38.946
    - type: map_at_100
      value: 40.855000000000004
    - type: map_at_1000
      value: 40.953
    - type: map_at_3
      value: 34.533
    - type: map_at_5
      value: 36.905
    - type: mrr_at_1
      value: 39.235
    - type: mrr_at_10
      value: 47.713
    - type: mrr_at_100
      value: 48.71
    - type: mrr_at_1000
      value: 48.747
    - type: mrr_at_3
      value: 45.086
    - type: mrr_at_5
      value: 46.498
    - type: ndcg_at_1
      value: 39.235
    - type: ndcg_at_10
      value: 45.831
    - type: ndcg_at_100
      value: 53.162
    - type: ndcg_at_1000
      value: 54.800000000000004
    - type: ndcg_at_3
      value: 40.188
    - type: ndcg_at_5
      value: 42.387
    - type: precision_at_1
      value: 39.235
    - type: precision_at_10
      value: 10.273
    - type: precision_at_100
      value: 1.627
    - type: precision_at_1000
      value: 0.183
    - type: precision_at_3
      value: 22.772000000000002
    - type: precision_at_5
      value: 16.524
    - type: recall_at_1
      value: 25.751
    - type: recall_at_10
      value: 57.411
    - type: recall_at_100
      value: 87.44
    - type: recall_at_1000
      value: 98.386
    - type: recall_at_3
      value: 40.416000000000004
    - type: recall_at_5
      value: 47.238
  - task:
      type: PairClassification
    dataset:
      type: C-MTEB/CMNLI
      name: MTEB Cmnli
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_accuracy
      value: 83.59591100420926
    - type: cos_sim_ap
      value: 90.65538153970263
    - type: cos_sim_f1
      value: 84.76466651795673
    - type: cos_sim_precision
      value: 81.04073363190446
    - type: cos_sim_recall
      value: 88.84732288987608
    - type: dot_accuracy
      value: 83.59591100420926
    - type: dot_ap
      value: 90.64355541781003
    - type: dot_f1
      value: 84.76466651795673
    - type: dot_precision
      value: 81.04073363190446
    - type: dot_recall
      value: 88.84732288987608
    - type: euclidean_accuracy
      value: 83.59591100420926
    - type: euclidean_ap
      value: 90.6547878194287
    - type: euclidean_f1
      value: 84.76466651795673
    - type: euclidean_precision
      value: 81.04073363190446
    - type: euclidean_recall
      value: 88.84732288987608
    - type: manhattan_accuracy
      value: 83.51172579675286
    - type: manhattan_ap
      value: 90.59941589844144
    - type: manhattan_f1
      value: 84.51827242524917
    - type: manhattan_precision
      value: 80.28613507258574
    - type: manhattan_recall
      value: 89.22141688099134
    - type: max_accuracy
      value: 83.59591100420926
    - type: max_ap
      value: 90.65538153970263
    - type: max_f1
      value: 84.76466651795673
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CovidRetrieval
      name: MTEB CovidRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 63.251000000000005
    - type: map_at_10
      value: 72.442
    - type: map_at_100
      value: 72.79299999999999
    - type: map_at_1000
      value: 72.80499999999999
    - type: map_at_3
      value: 70.293
    - type: map_at_5
      value: 71.571
    - type: mrr_at_1
      value: 63.541000000000004
    - type: mrr_at_10
      value: 72.502
    - type: mrr_at_100
      value: 72.846
    - type: mrr_at_1000
      value: 72.858
    - type: mrr_at_3
      value: 70.39
    - type: mrr_at_5
      value: 71.654
    - type: ndcg_at_1
      value: 63.541000000000004
    - type: ndcg_at_10
      value: 76.774
    - type: ndcg_at_100
      value: 78.389
    - type: ndcg_at_1000
      value: 78.678
    - type: ndcg_at_3
      value: 72.47
    - type: ndcg_at_5
      value: 74.748
    - type: precision_at_1
      value: 63.541000000000004
    - type: precision_at_10
      value: 9.115
    - type: precision_at_100
      value: 0.9860000000000001
    - type: precision_at_1000
      value: 0.101
    - type: precision_at_3
      value: 26.379
    - type: precision_at_5
      value: 16.965
    - type: recall_at_1
      value: 63.251000000000005
    - type: recall_at_10
      value: 90.253
    - type: recall_at_100
      value: 97.576
    - type: recall_at_1000
      value: 99.789
    - type: recall_at_3
      value: 78.635
    - type: recall_at_5
      value: 84.141
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/DuRetrieval
      name: MTEB DuRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 23.597
    - type: map_at_10
      value: 72.411
    - type: map_at_100
      value: 75.58500000000001
    - type: map_at_1000
      value: 75.64800000000001
    - type: map_at_3
      value: 49.61
    - type: map_at_5
      value: 62.527
    - type: mrr_at_1
      value: 84.65
    - type: mrr_at_10
      value: 89.43900000000001
    - type: mrr_at_100
      value: 89.525
    - type: mrr_at_1000
      value: 89.529
    - type: mrr_at_3
      value: 89
    - type: mrr_at_5
      value: 89.297
    - type: ndcg_at_1
      value: 84.65
    - type: ndcg_at_10
      value: 81.47
    - type: ndcg_at_100
      value: 85.198
    - type: ndcg_at_1000
      value: 85.828
    - type: ndcg_at_3
      value: 79.809
    - type: ndcg_at_5
      value: 78.55
    - type: precision_at_1
      value: 84.65
    - type: precision_at_10
      value: 39.595
    - type: precision_at_100
      value: 4.707
    - type: precision_at_1000
      value: 0.485
    - type: precision_at_3
      value: 71.61699999999999
    - type: precision_at_5
      value: 60.45
    - type: recall_at_1
      value: 23.597
    - type: recall_at_10
      value: 83.34
    - type: recall_at_100
      value: 95.19800000000001
    - type: recall_at_1000
      value: 98.509
    - type: recall_at_3
      value: 52.744
    - type: recall_at_5
      value: 68.411
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/EcomRetrieval
      name: MTEB EcomRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 53.1
    - type: map_at_10
      value: 63.359
    - type: map_at_100
      value: 63.9
    - type: map_at_1000
      value: 63.909000000000006
    - type: map_at_3
      value: 60.95
    - type: map_at_5
      value: 62.305
    - type: mrr_at_1
      value: 53.1
    - type: mrr_at_10
      value: 63.359
    - type: mrr_at_100
      value: 63.9
    - type: mrr_at_1000
      value: 63.909000000000006
    - type: mrr_at_3
      value: 60.95
    - type: mrr_at_5
      value: 62.305
    - type: ndcg_at_1
      value: 53.1
    - type: ndcg_at_10
      value: 68.418
    - type: ndcg_at_100
      value: 70.88499999999999
    - type: ndcg_at_1000
      value: 71.135
    - type: ndcg_at_3
      value: 63.50599999999999
    - type: ndcg_at_5
      value: 65.92
    - type: precision_at_1
      value: 53.1
    - type: precision_at_10
      value: 8.43
    - type: precision_at_100
      value: 0.955
    - type: precision_at_1000
      value: 0.098
    - type: precision_at_3
      value: 23.633000000000003
    - type: precision_at_5
      value: 15.340000000000002
    - type: recall_at_1
      value: 53.1
    - type: recall_at_10
      value: 84.3
    - type: recall_at_100
      value: 95.5
    - type: recall_at_1000
      value: 97.5
    - type: recall_at_3
      value: 70.89999999999999
    - type: recall_at_5
      value: 76.7
  - task:
      type: Classification
    dataset:
      type: C-MTEB/IFlyTek-classification
      name: MTEB IFlyTek
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 48.303193535975375
    - type: f1
      value: 35.96559358693866
  - task:
      type: Classification
    dataset:
      type: C-MTEB/JDReview-classification
      name: MTEB JDReview
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 85.06566604127579
    - type: ap
      value: 52.0596483757231
    - type: f1
      value: 79.5196835127668
  - task:
      type: STS
    dataset:
      type: C-MTEB/LCQMC
      name: MTEB LCQMC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 74.48499423626059
    - type: cos_sim_spearman
      value: 78.75806756061169
    - type: euclidean_pearson
      value: 78.47917601852879
    - type: euclidean_spearman
      value: 78.75807199272622
    - type: manhattan_pearson
      value: 78.40207586289772
    - type: manhattan_spearman
      value: 78.6911776964119
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/Mmarco-reranking
      name: MTEB MMarcoReranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 24.75987466552363
    - type: mrr
      value: 23.40515873015873
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MMarcoRetrieval
      name: MTEB MMarcoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 58.026999999999994
    - type: map_at_10
      value: 67.50699999999999
    - type: map_at_100
      value: 67.946
    - type: map_at_1000
      value: 67.96600000000001
    - type: map_at_3
      value: 65.503
    - type: map_at_5
      value: 66.649
    - type: mrr_at_1
      value: 60.20100000000001
    - type: mrr_at_10
      value: 68.271
    - type: mrr_at_100
      value: 68.664
    - type: mrr_at_1000
      value: 68.682
    - type: mrr_at_3
      value: 66.47800000000001
    - type: mrr_at_5
      value: 67.499
    - type: ndcg_at_1
      value: 60.20100000000001
    - type: ndcg_at_10
      value: 71.697
    - type: ndcg_at_100
      value: 73.736
    - type: ndcg_at_1000
      value: 74.259
    - type: ndcg_at_3
      value: 67.768
    - type: ndcg_at_5
      value: 69.72
    - type: precision_at_1
      value: 60.20100000000001
    - type: precision_at_10
      value: 8.927999999999999
    - type: precision_at_100
      value: 0.9950000000000001
    - type: precision_at_1000
      value: 0.104
    - type: precision_at_3
      value: 25.883
    - type: precision_at_5
      value: 16.55
    - type: recall_at_1
      value: 58.026999999999994
    - type: recall_at_10
      value: 83.966
    - type: recall_at_100
      value: 93.313
    - type: recall_at_1000
      value: 97.426
    - type: recall_at_3
      value: 73.342
    - type: recall_at_5
      value: 77.997
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (zh-CN)
      config: zh-CN
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 71.1600537995965
    - type: f1
      value: 68.8126216609964
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (zh-CN)
      config: zh-CN
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 73.54068594485541
    - type: f1
      value: 73.46845879869848
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MedicalRetrieval
      name: MTEB MedicalRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 54.900000000000006
    - type: map_at_10
      value: 61.363
    - type: map_at_100
      value: 61.924
    - type: map_at_1000
      value: 61.967000000000006
    - type: map_at_3
      value: 59.767
    - type: map_at_5
      value: 60.802
    - type: mrr_at_1
      value: 55.1
    - type: mrr_at_10
      value: 61.454
    - type: mrr_at_100
      value: 62.016000000000005
    - type: mrr_at_1000
      value: 62.059
    - type: mrr_at_3
      value: 59.882999999999996
    - type: mrr_at_5
      value: 60.893
    - type: ndcg_at_1
      value: 54.900000000000006
    - type: ndcg_at_10
      value: 64.423
    - type: ndcg_at_100
      value: 67.35900000000001
    - type: ndcg_at_1000
      value: 68.512
    - type: ndcg_at_3
      value: 61.224000000000004
    - type: ndcg_at_5
      value: 63.083
    - type: precision_at_1
      value: 54.900000000000006
    - type: precision_at_10
      value: 7.3999999999999995
    - type: precision_at_100
      value: 0.882
    - type: precision_at_1000
      value: 0.097
    - type: precision_at_3
      value: 21.8
    - type: precision_at_5
      value: 13.98
    - type: recall_at_1
      value: 54.900000000000006
    - type: recall_at_10
      value: 74
    - type: recall_at_100
      value: 88.2
    - type: recall_at_1000
      value: 97.3
    - type: recall_at_3
      value: 65.4
    - type: recall_at_5
      value: 69.89999999999999
  - task:
      type: Classification
    dataset:
      type: C-MTEB/MultilingualSentiment-classification
      name: MTEB MultilingualSentiment
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 75.15666666666667
    - type: f1
      value: 74.8306375354435
  - task:
      type: PairClassification
    dataset:
      type: C-MTEB/OCNLI
      name: MTEB Ocnli
      config: default
      split: validation
      revision: None
    metrics:
    - type: cos_sim_accuracy
      value: 83.10774228478614
    - type: cos_sim_ap
      value: 87.17679348388666
    - type: cos_sim_f1
      value: 84.59302325581395
    - type: cos_sim_precision
      value: 78.15577439570276
    - type: cos_sim_recall
      value: 92.18585005279832
    - type: dot_accuracy
      value: 83.10774228478614
    - type: dot_ap
      value: 87.17679348388666
    - type: dot_f1
      value: 84.59302325581395
    - type: dot_precision
      value: 78.15577439570276
    - type: dot_recall
      value: 92.18585005279832
    - type: euclidean_accuracy
      value: 83.10774228478614
    - type: euclidean_ap
      value: 87.17679348388666
    - type: euclidean_f1
      value: 84.59302325581395
    - type: euclidean_precision
      value: 78.15577439570276
    - type: euclidean_recall
      value: 92.18585005279832
    - type: manhattan_accuracy
      value: 82.67460747157553
    - type: manhattan_ap
      value: 86.94296334435238
    - type: manhattan_f1
      value: 84.32327166504382
    - type: manhattan_precision
      value: 78.22944896115628
    - type: manhattan_recall
      value: 91.4466737064414
    - type: max_accuracy
      value: 83.10774228478614
    - type: max_ap
      value: 87.17679348388666
    - type: max_f1
      value: 84.59302325581395
  - task:
      type: Classification
    dataset:
      type: C-MTEB/OnlineShopping-classification
      name: MTEB OnlineShopping
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 93.24999999999999
    - type: ap
      value: 90.98617641063584
    - type: f1
      value: 93.23447883650289
  - task:
      type: STS
    dataset:
      type: C-MTEB/PAWSX
      name: MTEB PAWSX
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 41.071417937737856
    - type: cos_sim_spearman
      value: 45.049199344455424
    - type: euclidean_pearson
      value: 44.913450096830786
    - type: euclidean_spearman
      value: 45.05733424275291
    - type: manhattan_pearson
      value: 44.881623825912065
    - type: manhattan_spearman
      value: 44.989923561416596
  - task:
      type: STS
    dataset:
      type: C-MTEB/QBQTC
      name: MTEB QBQTC
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 41.38238052689359
    - type: cos_sim_spearman
      value: 42.61949690594399
    - type: euclidean_pearson
      value: 40.61261500356766
    - type: euclidean_spearman
      value: 42.619626605620724
    - type: manhattan_pearson
      value: 40.8886109204474
    - type: manhattan_spearman
      value: 42.75791523010463
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (zh)
      config: zh
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 62.10977863727196
    - type: cos_sim_spearman
      value: 63.843727112473225
    - type: euclidean_pearson
      value: 63.25133487817196
    - type: euclidean_spearman
      value: 63.843727112473225
    - type: manhattan_pearson
      value: 63.58749018644103
    - type: manhattan_spearman
      value: 63.83820575456674
  - task:
      type: STS
    dataset:
      type: C-MTEB/STSB
      name: MTEB STSB
      config: default
      split: test
      revision: None
    metrics:
    - type: cos_sim_pearson
      value: 79.30616496720054
    - type: cos_sim_spearman
      value: 80.767935782436
    - type: euclidean_pearson
      value: 80.4160642670106
    - type: euclidean_spearman
      value: 80.76820284024356
    - type: manhattan_pearson
      value: 80.27318714580251
    - type: manhattan_spearman
      value: 80.61030164164964
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/T2Reranking
      name: MTEB T2Reranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 66.26242871142425
    - type: mrr
      value: 76.20689863623174
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/T2Retrieval
      name: MTEB T2Retrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 26.240999999999996
    - type: map_at_10
      value: 73.009
    - type: map_at_100
      value: 76.893
    - type: map_at_1000
      value: 76.973
    - type: map_at_3
      value: 51.339
    - type: map_at_5
      value: 63.003
    - type: mrr_at_1
      value: 87.458
    - type: mrr_at_10
      value: 90.44
    - type: mrr_at_100
      value: 90.558
    - type: mrr_at_1000
      value: 90.562
    - type: mrr_at_3
      value: 89.89
    - type: mrr_at_5
      value: 90.231
    - type: ndcg_at_1
      value: 87.458
    - type: ndcg_at_10
      value: 81.325
    - type: ndcg_at_100
      value: 85.61999999999999
    - type: ndcg_at_1000
      value: 86.394
    - type: ndcg_at_3
      value: 82.796
    - type: ndcg_at_5
      value: 81.219
    - type: precision_at_1
      value: 87.458
    - type: precision_at_10
      value: 40.534
    - type: precision_at_100
      value: 4.96
    - type: precision_at_1000
      value: 0.514
    - type: precision_at_3
      value: 72.444
    - type: precision_at_5
      value: 60.601000000000006
    - type: recall_at_1
      value: 26.240999999999996
    - type: recall_at_10
      value: 80.42
    - type: recall_at_100
      value: 94.118
    - type: recall_at_1000
      value: 98.02199999999999
    - type: recall_at_3
      value: 53.174
    - type: recall_at_5
      value: 66.739
  - task:
      type: Classification
    dataset:
      type: C-MTEB/TNews-classification
      name: MTEB TNews
      config: default
      split: validation
      revision: None
    metrics:
    - type: accuracy
      value: 52.40899999999999
    - type: f1
      value: 50.68532128056062
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/ThuNewsClusteringP2P
      name: MTEB ThuNewsClusteringP2P
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 65.57616085176686
  - task:
      type: Clustering
    dataset:
      type: C-MTEB/ThuNewsClusteringS2S
      name: MTEB ThuNewsClusteringS2S
      config: default
      split: test
      revision: None
    metrics:
    - type: v_measure
      value: 58.844999922904925
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/VideoRetrieval
      name: MTEB VideoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 58.4
    - type: map_at_10
      value: 68.64
    - type: map_at_100
      value: 69.062
    - type: map_at_1000
      value: 69.073
    - type: map_at_3
      value: 66.567
    - type: map_at_5
      value: 67.89699999999999
    - type: mrr_at_1
      value: 58.4
    - type: mrr_at_10
      value: 68.64
    - type: mrr_at_100
      value: 69.062
    - type: mrr_at_1000
      value: 69.073
    - type: mrr_at_3
      value: 66.567
    - type: mrr_at_5
      value: 67.89699999999999
    - type: ndcg_at_1
      value: 58.4
    - type: ndcg_at_10
      value: 73.30600000000001
    - type: ndcg_at_100
      value: 75.276
    - type: ndcg_at_1000
      value: 75.553
    - type: ndcg_at_3
      value: 69.126
    - type: ndcg_at_5
      value: 71.519
    - type: precision_at_1
      value: 58.4
    - type: precision_at_10
      value: 8.780000000000001
    - type: precision_at_100
      value: 0.968
    - type: precision_at_1000
      value: 0.099
    - type: precision_at_3
      value: 25.5
    - type: precision_at_5
      value: 16.46
    - type: recall_at_1
      value: 58.4
    - type: recall_at_10
      value: 87.8
    - type: recall_at_100
      value: 96.8
    - type: recall_at_1000
      value: 99
    - type: recall_at_3
      value: 76.5
    - type: recall_at_5
      value: 82.3
  - task:
      type: Classification
    dataset:
      type: C-MTEB/waimai-classification
      name: MTEB Waimai
      config: default
      split: test
      revision: None
    metrics:
    - type: accuracy
      value: 86.21000000000001
    - type: ap
      value: 69.17460264576461
    - type: f1
      value: 84.68032984659226
license: apache-2.0
language:
- zh
- en
pipeline_tag: feature-extraction
---

<div align="center">
<img src="logo.png" alt="icon" width="100px"/>
</div>

<h1 align="center">Dmeta-embedding</h1>
<h4 align="center">
    <p>
      <a href="https://huggingface.co/DMetaSoul/Dmeta-embedding/README.md">English</a>  |
      <a href="https://huggingface.co/DMetaSoul/Dmeta-embedding/blob/main/README_zh.md">中文</a>
    </p>
    <p>
        <a href=#usage>Usage</a>  |
        <a href="#evaluation">Evaluation (MTEB)</a> |
        <a href=#faq>FAQ</a> |
        <a href="#contact">Contact</a> |
        <a href="#license">License (Free)</a> 
    <p>
</h4>

**Update News**

- **2024.04.01**, The Dmeta-embedding [**small version**](https://huggingface.co/DMetaSoul/Dmeta-embedding-zh-small) is released. Just with 8 layers, inference is more efficient, about 30% improved.
- **2024.02.07**, The **Embedding API** service based on the Dmeta-embedding model now open for internal beta testing. [**Click the link**](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf) to apply, and you will receive **400M tokens** for free, which can encode approximately GB-level Chinese text.

    - Our original intention. Let everyone use Embedding technology at low cost, pay more attention to their own business and product services, and leave the complex technical parts to us.
    - How to apply and use. [Click the link](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf) to submit a form. We will reply to you via <[email protected]> within 48 hours. In order to be compatible with the large language model (LLM) technology ecosystem, our Embedding API is used in the same way as OpenAI. We will explain the specific usage in the reply email.
    - Join the ours. In the future, we will continue to work in the direction of large language models/AIGC to bring valuable technologies to the community. You can [click on the picture](https://huggingface.co/DMetaSoul/Dmeta-embedding/resolve/main/weixin.jpeg) and scan the QR code to join our WeChat community and cheer for the AIGC together!

------

**Dmeta-embedding** is a cross-domain, cross-task, out-of-the-box Chinese embedding model. It is suitable for various scenarios such as search engine, Q&A, intelligent customer service, LLM+RAG, etc. It supports inference using tools like Transformers/Sentence-Transformers/Langchain.

Features:

- Excellent cross-domain and scene generalization performance, currently ranked second on the **[MTEB](https://huggingface.co/spaces/mteb/leaderboard) Chinese leaderboard**. (2024.01.25)
- The parameter size of model is just **400MB**, which can greatly reduce the cost of inference.
- The context window length is up to **1024**, more suitable for long text retrieval, RAG and other scenarios

## Usage

The model supports inference through frameworks such as [Sentence-Transformers](#sentence-transformers), [Langchain](#langchain), [Huggingface Transformers](#huggingface-transformers), etc. For specific usage, please refer to the following examples.


### Sentence-Transformers

Load and inference Dmeta-embedding via [sentence-transformers](https://www.SBERT.net) as following:

```
pip install -U sentence-transformers
```

```python
from sentence_transformers import SentenceTransformer

texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]

model = SentenceTransformer('DMetaSoul/Dmeta-embedding')
embs1 = model.encode(texts1, normalize_embeddings=True)
embs2 = model.encode(texts2, normalize_embeddings=True)

similarity = embs1 @ embs2.T
print(similarity)

for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)

    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()
```

Output:

```
查询文本:胡子长得太快怎么办?
相似文本:胡子长得快怎么办?,打分:0.9535336494445801
相似文本:怎样使胡子不浓密!,打分:0.6776421070098877
相似文本:香港买手表哪里好,打分:0.2297907918691635
相似文本:在杭州手机到哪里买,打分:0.11386542022228241

查询文本:在香港哪里买手表好
相似文本:香港买手表哪里好,打分:0.9843372106552124
相似文本:在杭州手机到哪里买,打分:0.45211508870124817
相似文本:胡子长得快怎么办?,打分:0.19985519349575043
相似文本:怎样使胡子不浓密!,打分:0.18558596074581146
```

### Langchain

Load and inference Dmeta-embedding via [langchain](https://www.langchain.com/) as following:

```
pip install -U langchain
```

```python
import torch
import numpy as np
from langchain.embeddings import HuggingFaceEmbeddings

model_name = "DMetaSoul/Dmeta-embedding"
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity

model = HuggingFaceEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs,
)

texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]

embs1 = model.embed_documents(texts1)
embs2 = model.embed_documents(texts2)
embs1, embs2 = np.array(embs1), np.array(embs2)

similarity = embs1 @ embs2.T
print(similarity)

for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)

    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()
```

### HuggingFace Transformers

Load and inference Dmeta-embedding via [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) as following:

```
pip install -U transformers
```

```python
import torch
from transformers import AutoTokenizer, AutoModel


def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def cls_pooling(model_output):
    return model_output[0][:, 0]


texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]

tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/Dmeta-embedding')
model = AutoModel.from_pretrained('DMetaSoul/Dmeta-embedding')
model.eval()

with torch.no_grad():
    inputs1 = tokenizer(texts1, padding=True, truncation=True, return_tensors='pt')
    inputs2 = tokenizer(texts2, padding=True, truncation=True, return_tensors='pt')

    model_output1 = model(**inputs1)
    model_output2 = model(**inputs2)
    embs1, embs2 = cls_pooling(model_output1), cls_pooling(model_output2)
    embs1 = torch.nn.functional.normalize(embs1, p=2, dim=1).numpy()
    embs2 = torch.nn.functional.normalize(embs2, p=2, dim=1).numpy()


similarity = embs1 @ embs2.T
print(similarity)

for i in range(len(texts1)):
    scores = []
    for j in range(len(texts2)):
        scores.append([texts2[j], similarity[i][j]])
    scores = sorted(scores, key=lambda x:x[1], reverse=True)

    print(f"查询文本:{texts1[i]}")
    for text2, score in scores:
        print(f"相似文本:{text2},打分:{score}")
    print()
```

## Evaluation

The Dmeta-embedding model ranked first in open source on the [MTEB Chinese list](https://huggingface.co/spaces/mteb/leaderboard) (2024.01.25, first on the Baichuan list, that is not open source). For specific evaluation data and code, please refer to the MTEB [official](https://github.com/embeddings-benchmark/mteb).

**MTEB Chinese**:   

The [Chinese leaderboard dataset](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) was collected by the BAAI. It contains 6 classic tasks and a total of 35 Chinese datasets, covering classification, retrieval, reranking, sentence pair classification, STS and other tasks. It is the most comprehensive Embedding model at present. The world's authoritative benchmark of ability assessments.

| Model                                                                                                    | Vendor | Embedding dimension | Avg   | Retrieval | STS   | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------------------------------------------------------------------------------- | ------ |:-------------------:|:-----:|:---------:|:-----:|:------------------:|:--------------:|:---------:|:----------:|
| [Dmeta-embedding](https://huggingface.co/DMetaSoul/Dmeta-embedding)                                      | Our    | 768                | 67.51 | 70.41     | 64.09 | 88.92              | 70             | 67.17     | 50.96      |
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh)                                             | AliBaba Damo  | 1024                | 66.72 | 72.49     | 57.82 | 84.41              | 71.34          | 67.4      | 53.07      |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5)                                  | BAAI     | 1024                | 64.53 | 70.46     | 56.25 | 81.6               | 69.13          | 65.84     | 48.99      |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5)                                    | BAAI     | 768                 | 63.13 | 69.49     | 53.72 | 79.75              | 68.07          | 65.39     | 47.53      |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | OpenAI | 1536                | 53.02 | 52.0      | 43.35 | 69.56              | 64.31          | 54.28     | 45.68      |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese)                                 | 个人     | 768                 | 47.63 | 38.79     | 43.41 | 67.41              | 62.19          | 49.45     | 37.66      |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese)                              | 个人     | 1024                | 47.36 | 41.94     | 44.97 | 70.86              | 60.66          | 49.16     | 30.02      |

## FAQ

<details>
  <summary>1. Why does the model have so good generalization performance, and can be used to many task scenarios out of the box?</summary>

<!-- ### Why does the model have so good generalization performance, and can be used to many task scenarios out of the box? -->

The excellent generalization ability of the model comes from the diversity of pre-training data, as well as the design of different optimization objectives for multi-task scenarios when pre-training the model.

Specifically, the mainly technical features:

1) The first is large-scale weak label contrastive learning. Industry experience shows that out-of-the-box language models perform poorly on Embedding-related tasks. However, due to the high cost of supervised data annotation and acquisition, large-scale, high-quality weak label learning has become an optional technical route. By extracting weak labels from semi-structured data such as forums, news, Q&A communities, and encyclopedias on the Internet, and using large models to perform low-quality filtering, 1 billion-level weakly supervised text pair data is obtained.

2) The second is high-quality supervised learning. We have collected and compiled a large-scale open source annotated sentence pair data set, including a total of 30 million sentence pair samples in encyclopedia, education, finance, medical care, law, news, academia and other fields. At the same time, we mine hard-to-negative sample pairs and use contrastive learning to better optimize the model.

3) The last step is the optimization of retrieval tasks. Considering that search, question and answer, RAG and other scenarios are important application positions for the Embedding model, in order to enhance the cross-domain and cross-scenario performance of the model, we have specially optimized the model for retrieval tasks. The core lies in mining data from question and answer, retrieval and other data. Hard-to-negative samples use sparse and dense retrieval and other methods to construct a million-level hard-to-negative sample pair data set, which significantly improves the cross-domain retrieval performance of the model.

</details>

<details>
  <summary>2. Can the model be used commercially?</summary>

<!-- ### Can the model be used commercially? -->

Our model is based on the Apache-2.0 license and fully supports free commercial use.

</details>

<details>
  <summary>3. How to reproduce the MTEB evaluation?</summary>

<!-- ### How to reproduce the MTEB evaluation? -->

We provide the mteb_eval.py script in this model hub. You can run this script directly to reproduce our evaluation results.

</details>

<details>
  <summary>4. What are the follow-up plans?</summary>

<!-- ### What are the follow-up plans? -->

We will continue to work hard to provide the community with embedding models that have excellent performance, lightweight reasoning, and can be used in multiple scenarios out of the box. At the same time, we will gradually integrate embedding into the existing technology ecosystem and grow with the community!

</details>

## Contact

If you encounter any problems during use, you are welcome to go to the [discussion](https://huggingface.co/DMetaSoul/Dmeta-embedding/discussions) to make suggestions.

You can also send us an email: Zhao Zhonghao <[email protected]>, Xiao Wenbin <[email protected]>, Sun Kai <[email protected]>

At the same time, you are welcome to scan the QR code to join our WeChat group and build the AIGC technology ecosystem together!

<image src="https://huggingface.co/DMetaSoul/Dmeta-embedding/resolve/main/weixin.jpeg" style="display: block; margin-left: auto; margin-right: auto; width: 256px; height: 358px;"/>

## License

Dmeta-embedding is licensed under the Apache-2.0 License. The released models can be used for commercial purposes free of charge.