Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,1097 @@ tags:
|
|
7 |
- transformers
|
8 |
- semantic-search
|
9 |
- chinese
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# DMetaSoul/sbert-chinese-general-v1
|
|
|
7 |
- transformers
|
8 |
- semantic-search
|
9 |
- chinese
|
10 |
+
- mteb
|
11 |
+
model-index:
|
12 |
+
- name: sbert-chinese-general-v1
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: STS
|
16 |
+
dataset:
|
17 |
+
type: C-MTEB/AFQMC
|
18 |
+
name: MTEB AFQMC
|
19 |
+
config: default
|
20 |
+
split: validation
|
21 |
+
revision: None
|
22 |
+
metrics:
|
23 |
+
- type: cos_sim_pearson
|
24 |
+
value: 22.293919432958074
|
25 |
+
- type: cos_sim_spearman
|
26 |
+
value: 22.56718923553609
|
27 |
+
- type: euclidean_pearson
|
28 |
+
value: 22.525656322797026
|
29 |
+
- type: euclidean_spearman
|
30 |
+
value: 22.56718923553609
|
31 |
+
- type: manhattan_pearson
|
32 |
+
value: 22.501773028824065
|
33 |
+
- type: manhattan_spearman
|
34 |
+
value: 22.536992587828397
|
35 |
+
- task:
|
36 |
+
type: STS
|
37 |
+
dataset:
|
38 |
+
type: C-MTEB/ATEC
|
39 |
+
name: MTEB ATEC
|
40 |
+
config: default
|
41 |
+
split: test
|
42 |
+
revision: None
|
43 |
+
metrics:
|
44 |
+
- type: cos_sim_pearson
|
45 |
+
value: 30.33575274463879
|
46 |
+
- type: cos_sim_spearman
|
47 |
+
value: 30.298708742167772
|
48 |
+
- type: euclidean_pearson
|
49 |
+
value: 32.33094743729218
|
50 |
+
- type: euclidean_spearman
|
51 |
+
value: 30.298710993858734
|
52 |
+
- type: manhattan_pearson
|
53 |
+
value: 32.31155376195945
|
54 |
+
- type: manhattan_spearman
|
55 |
+
value: 30.267669681690744
|
56 |
+
- task:
|
57 |
+
type: Classification
|
58 |
+
dataset:
|
59 |
+
type: mteb/amazon_reviews_multi
|
60 |
+
name: MTEB AmazonReviewsClassification (zh)
|
61 |
+
config: zh
|
62 |
+
split: test
|
63 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
64 |
+
metrics:
|
65 |
+
- type: accuracy
|
66 |
+
value: 37.507999999999996
|
67 |
+
- type: f1
|
68 |
+
value: 36.436808400753286
|
69 |
+
- task:
|
70 |
+
type: STS
|
71 |
+
dataset:
|
72 |
+
type: C-MTEB/BQ
|
73 |
+
name: MTEB BQ
|
74 |
+
config: default
|
75 |
+
split: test
|
76 |
+
revision: None
|
77 |
+
metrics:
|
78 |
+
- type: cos_sim_pearson
|
79 |
+
value: 41.493256724214255
|
80 |
+
- type: cos_sim_spearman
|
81 |
+
value: 40.98395961967895
|
82 |
+
- type: euclidean_pearson
|
83 |
+
value: 41.12345737966565
|
84 |
+
- type: euclidean_spearman
|
85 |
+
value: 40.983959619555996
|
86 |
+
- type: manhattan_pearson
|
87 |
+
value: 41.02584539471014
|
88 |
+
- type: manhattan_spearman
|
89 |
+
value: 40.87549513383032
|
90 |
+
- task:
|
91 |
+
type: BitextMining
|
92 |
+
dataset:
|
93 |
+
type: mteb/bucc-bitext-mining
|
94 |
+
name: MTEB BUCC (zh-en)
|
95 |
+
config: zh-en
|
96 |
+
split: test
|
97 |
+
revision: d51519689f32196a32af33b075a01d0e7c51e252
|
98 |
+
metrics:
|
99 |
+
- type: accuracy
|
100 |
+
value: 9.794628751974724
|
101 |
+
- type: f1
|
102 |
+
value: 9.350535369492716
|
103 |
+
- type: precision
|
104 |
+
value: 9.179392662804986
|
105 |
+
- type: recall
|
106 |
+
value: 9.794628751974724
|
107 |
+
- task:
|
108 |
+
type: Clustering
|
109 |
+
dataset:
|
110 |
+
type: C-MTEB/CLSClusteringP2P
|
111 |
+
name: MTEB CLSClusteringP2P
|
112 |
+
config: default
|
113 |
+
split: test
|
114 |
+
revision: None
|
115 |
+
metrics:
|
116 |
+
- type: v_measure
|
117 |
+
value: 34.984726547788284
|
118 |
+
- task:
|
119 |
+
type: Clustering
|
120 |
+
dataset:
|
121 |
+
type: C-MTEB/CLSClusteringS2S
|
122 |
+
name: MTEB CLSClusteringS2S
|
123 |
+
config: default
|
124 |
+
split: test
|
125 |
+
revision: None
|
126 |
+
metrics:
|
127 |
+
- type: v_measure
|
128 |
+
value: 27.81945732281589
|
129 |
+
- task:
|
130 |
+
type: Reranking
|
131 |
+
dataset:
|
132 |
+
type: C-MTEB/CMedQAv1-reranking
|
133 |
+
name: MTEB CMedQAv1
|
134 |
+
config: default
|
135 |
+
split: test
|
136 |
+
revision: None
|
137 |
+
metrics:
|
138 |
+
- type: map
|
139 |
+
value: 53.06586280826805
|
140 |
+
- type: mrr
|
141 |
+
value: 59.58781746031746
|
142 |
+
- task:
|
143 |
+
type: Reranking
|
144 |
+
dataset:
|
145 |
+
type: C-MTEB/CMedQAv2-reranking
|
146 |
+
name: MTEB CMedQAv2
|
147 |
+
config: default
|
148 |
+
split: test
|
149 |
+
revision: None
|
150 |
+
metrics:
|
151 |
+
- type: map
|
152 |
+
value: 52.83635946154306
|
153 |
+
- type: mrr
|
154 |
+
value: 59.315079365079356
|
155 |
+
- task:
|
156 |
+
type: Retrieval
|
157 |
+
dataset:
|
158 |
+
type: C-MTEB/CmedqaRetrieval
|
159 |
+
name: MTEB CmedqaRetrieval
|
160 |
+
config: default
|
161 |
+
split: dev
|
162 |
+
revision: None
|
163 |
+
metrics:
|
164 |
+
- type: map_at_1
|
165 |
+
value: 5.721
|
166 |
+
- type: map_at_10
|
167 |
+
value: 8.645
|
168 |
+
- type: map_at_100
|
169 |
+
value: 9.434
|
170 |
+
- type: map_at_1000
|
171 |
+
value: 9.586
|
172 |
+
- type: map_at_3
|
173 |
+
value: 7.413
|
174 |
+
- type: map_at_5
|
175 |
+
value: 8.05
|
176 |
+
- type: mrr_at_1
|
177 |
+
value: 9.626999999999999
|
178 |
+
- type: mrr_at_10
|
179 |
+
value: 13.094
|
180 |
+
- type: mrr_at_100
|
181 |
+
value: 13.854
|
182 |
+
- type: mrr_at_1000
|
183 |
+
value: 13.958
|
184 |
+
- type: mrr_at_3
|
185 |
+
value: 11.724
|
186 |
+
- type: mrr_at_5
|
187 |
+
value: 12.409
|
188 |
+
- type: ndcg_at_1
|
189 |
+
value: 9.626999999999999
|
190 |
+
- type: ndcg_at_10
|
191 |
+
value: 11.35
|
192 |
+
- type: ndcg_at_100
|
193 |
+
value: 15.593000000000002
|
194 |
+
- type: ndcg_at_1000
|
195 |
+
value: 19.619
|
196 |
+
- type: ndcg_at_3
|
197 |
+
value: 9.317
|
198 |
+
- type: ndcg_at_5
|
199 |
+
value: 10.049
|
200 |
+
- type: precision_at_1
|
201 |
+
value: 9.626999999999999
|
202 |
+
- type: precision_at_10
|
203 |
+
value: 2.796
|
204 |
+
- type: precision_at_100
|
205 |
+
value: 0.629
|
206 |
+
- type: precision_at_1000
|
207 |
+
value: 0.11800000000000001
|
208 |
+
- type: precision_at_3
|
209 |
+
value: 5.476
|
210 |
+
- type: precision_at_5
|
211 |
+
value: 4.1209999999999996
|
212 |
+
- type: recall_at_1
|
213 |
+
value: 5.721
|
214 |
+
- type: recall_at_10
|
215 |
+
value: 15.190000000000001
|
216 |
+
- type: recall_at_100
|
217 |
+
value: 33.633
|
218 |
+
- type: recall_at_1000
|
219 |
+
value: 62.019999999999996
|
220 |
+
- type: recall_at_3
|
221 |
+
value: 9.099
|
222 |
+
- type: recall_at_5
|
223 |
+
value: 11.423
|
224 |
+
- task:
|
225 |
+
type: PairClassification
|
226 |
+
dataset:
|
227 |
+
type: C-MTEB/CMNLI
|
228 |
+
name: MTEB Cmnli
|
229 |
+
config: default
|
230 |
+
split: validation
|
231 |
+
revision: None
|
232 |
+
metrics:
|
233 |
+
- type: cos_sim_accuracy
|
234 |
+
value: 77.36620565243535
|
235 |
+
- type: cos_sim_ap
|
236 |
+
value: 85.92291866877001
|
237 |
+
- type: cos_sim_f1
|
238 |
+
value: 78.19390231037029
|
239 |
+
- type: cos_sim_precision
|
240 |
+
value: 71.24183006535948
|
241 |
+
- type: cos_sim_recall
|
242 |
+
value: 86.64952069207388
|
243 |
+
- type: dot_accuracy
|
244 |
+
value: 77.36620565243535
|
245 |
+
- type: dot_ap
|
246 |
+
value: 85.94113738490068
|
247 |
+
- type: dot_f1
|
248 |
+
value: 78.19390231037029
|
249 |
+
- type: dot_precision
|
250 |
+
value: 71.24183006535948
|
251 |
+
- type: dot_recall
|
252 |
+
value: 86.64952069207388
|
253 |
+
- type: euclidean_accuracy
|
254 |
+
value: 77.36620565243535
|
255 |
+
- type: euclidean_ap
|
256 |
+
value: 85.92291893444687
|
257 |
+
- type: euclidean_f1
|
258 |
+
value: 78.19390231037029
|
259 |
+
- type: euclidean_precision
|
260 |
+
value: 71.24183006535948
|
261 |
+
- type: euclidean_recall
|
262 |
+
value: 86.64952069207388
|
263 |
+
- type: manhattan_accuracy
|
264 |
+
value: 77.29404690318701
|
265 |
+
- type: manhattan_ap
|
266 |
+
value: 85.88284362100919
|
267 |
+
- type: manhattan_f1
|
268 |
+
value: 78.17836812144213
|
269 |
+
- type: manhattan_precision
|
270 |
+
value: 71.18448838548666
|
271 |
+
- type: manhattan_recall
|
272 |
+
value: 86.69628244096329
|
273 |
+
- type: max_accuracy
|
274 |
+
value: 77.36620565243535
|
275 |
+
- type: max_ap
|
276 |
+
value: 85.94113738490068
|
277 |
+
- type: max_f1
|
278 |
+
value: 78.19390231037029
|
279 |
+
- task:
|
280 |
+
type: Retrieval
|
281 |
+
dataset:
|
282 |
+
type: C-MTEB/CovidRetrieval
|
283 |
+
name: MTEB CovidRetrieval
|
284 |
+
config: default
|
285 |
+
split: dev
|
286 |
+
revision: None
|
287 |
+
metrics:
|
288 |
+
- type: map_at_1
|
289 |
+
value: 26.976
|
290 |
+
- type: map_at_10
|
291 |
+
value: 35.18
|
292 |
+
- type: map_at_100
|
293 |
+
value: 35.921
|
294 |
+
- type: map_at_1000
|
295 |
+
value: 35.998999999999995
|
296 |
+
- type: map_at_3
|
297 |
+
value: 32.763
|
298 |
+
- type: map_at_5
|
299 |
+
value: 34.165
|
300 |
+
- type: mrr_at_1
|
301 |
+
value: 26.976
|
302 |
+
- type: mrr_at_10
|
303 |
+
value: 35.234
|
304 |
+
- type: mrr_at_100
|
305 |
+
value: 35.939
|
306 |
+
- type: mrr_at_1000
|
307 |
+
value: 36.016
|
308 |
+
- type: mrr_at_3
|
309 |
+
value: 32.771
|
310 |
+
- type: mrr_at_5
|
311 |
+
value: 34.172999999999995
|
312 |
+
- type: ndcg_at_1
|
313 |
+
value: 26.976
|
314 |
+
- type: ndcg_at_10
|
315 |
+
value: 39.635
|
316 |
+
- type: ndcg_at_100
|
317 |
+
value: 43.54
|
318 |
+
- type: ndcg_at_1000
|
319 |
+
value: 45.723
|
320 |
+
- type: ndcg_at_3
|
321 |
+
value: 34.652
|
322 |
+
- type: ndcg_at_5
|
323 |
+
value: 37.186
|
324 |
+
- type: precision_at_1
|
325 |
+
value: 26.976
|
326 |
+
- type: precision_at_10
|
327 |
+
value: 5.406
|
328 |
+
- type: precision_at_100
|
329 |
+
value: 0.736
|
330 |
+
- type: precision_at_1000
|
331 |
+
value: 0.091
|
332 |
+
- type: precision_at_3
|
333 |
+
value: 13.418
|
334 |
+
- type: precision_at_5
|
335 |
+
value: 9.293999999999999
|
336 |
+
- type: recall_at_1
|
337 |
+
value: 26.976
|
338 |
+
- type: recall_at_10
|
339 |
+
value: 53.766999999999996
|
340 |
+
- type: recall_at_100
|
341 |
+
value: 72.761
|
342 |
+
- type: recall_at_1000
|
343 |
+
value: 90.148
|
344 |
+
- type: recall_at_3
|
345 |
+
value: 40.095
|
346 |
+
- type: recall_at_5
|
347 |
+
value: 46.233000000000004
|
348 |
+
- task:
|
349 |
+
type: Retrieval
|
350 |
+
dataset:
|
351 |
+
type: C-MTEB/DuRetrieval
|
352 |
+
name: MTEB DuRetrieval
|
353 |
+
config: default
|
354 |
+
split: dev
|
355 |
+
revision: None
|
356 |
+
metrics:
|
357 |
+
- type: map_at_1
|
358 |
+
value: 11.285
|
359 |
+
- type: map_at_10
|
360 |
+
value: 30.259000000000004
|
361 |
+
- type: map_at_100
|
362 |
+
value: 33.772000000000006
|
363 |
+
- type: map_at_1000
|
364 |
+
value: 34.037
|
365 |
+
- type: map_at_3
|
366 |
+
value: 21.038999999999998
|
367 |
+
- type: map_at_5
|
368 |
+
value: 25.939
|
369 |
+
- type: mrr_at_1
|
370 |
+
value: 45.1
|
371 |
+
- type: mrr_at_10
|
372 |
+
value: 55.803999999999995
|
373 |
+
- type: mrr_at_100
|
374 |
+
value: 56.301
|
375 |
+
- type: mrr_at_1000
|
376 |
+
value: 56.330999999999996
|
377 |
+
- type: mrr_at_3
|
378 |
+
value: 53.333
|
379 |
+
- type: mrr_at_5
|
380 |
+
value: 54.798
|
381 |
+
- type: ndcg_at_1
|
382 |
+
value: 45.1
|
383 |
+
- type: ndcg_at_10
|
384 |
+
value: 41.156
|
385 |
+
- type: ndcg_at_100
|
386 |
+
value: 49.518
|
387 |
+
- type: ndcg_at_1000
|
388 |
+
value: 52.947
|
389 |
+
- type: ndcg_at_3
|
390 |
+
value: 39.708
|
391 |
+
- type: ndcg_at_5
|
392 |
+
value: 38.704
|
393 |
+
- type: precision_at_1
|
394 |
+
value: 45.1
|
395 |
+
- type: precision_at_10
|
396 |
+
value: 20.75
|
397 |
+
- type: precision_at_100
|
398 |
+
value: 3.424
|
399 |
+
- type: precision_at_1000
|
400 |
+
value: 0.42700000000000005
|
401 |
+
- type: precision_at_3
|
402 |
+
value: 35.632999999999996
|
403 |
+
- type: precision_at_5
|
404 |
+
value: 30.080000000000002
|
405 |
+
- type: recall_at_1
|
406 |
+
value: 11.285
|
407 |
+
- type: recall_at_10
|
408 |
+
value: 43.242000000000004
|
409 |
+
- type: recall_at_100
|
410 |
+
value: 68.604
|
411 |
+
- type: recall_at_1000
|
412 |
+
value: 85.904
|
413 |
+
- type: recall_at_3
|
414 |
+
value: 24.404
|
415 |
+
- type: recall_at_5
|
416 |
+
value: 32.757
|
417 |
+
- task:
|
418 |
+
type: Retrieval
|
419 |
+
dataset:
|
420 |
+
type: C-MTEB/EcomRetrieval
|
421 |
+
name: MTEB EcomRetrieval
|
422 |
+
config: default
|
423 |
+
split: dev
|
424 |
+
revision: None
|
425 |
+
metrics:
|
426 |
+
- type: map_at_1
|
427 |
+
value: 21.0
|
428 |
+
- type: map_at_10
|
429 |
+
value: 28.364
|
430 |
+
- type: map_at_100
|
431 |
+
value: 29.199
|
432 |
+
- type: map_at_1000
|
433 |
+
value: 29.265
|
434 |
+
- type: map_at_3
|
435 |
+
value: 25.717000000000002
|
436 |
+
- type: map_at_5
|
437 |
+
value: 27.311999999999998
|
438 |
+
- type: mrr_at_1
|
439 |
+
value: 21.0
|
440 |
+
- type: mrr_at_10
|
441 |
+
value: 28.364
|
442 |
+
- type: mrr_at_100
|
443 |
+
value: 29.199
|
444 |
+
- type: mrr_at_1000
|
445 |
+
value: 29.265
|
446 |
+
- type: mrr_at_3
|
447 |
+
value: 25.717000000000002
|
448 |
+
- type: mrr_at_5
|
449 |
+
value: 27.311999999999998
|
450 |
+
- type: ndcg_at_1
|
451 |
+
value: 21.0
|
452 |
+
- type: ndcg_at_10
|
453 |
+
value: 32.708
|
454 |
+
- type: ndcg_at_100
|
455 |
+
value: 37.184
|
456 |
+
- type: ndcg_at_1000
|
457 |
+
value: 39.273
|
458 |
+
- type: ndcg_at_3
|
459 |
+
value: 27.372000000000003
|
460 |
+
- type: ndcg_at_5
|
461 |
+
value: 30.23
|
462 |
+
- type: precision_at_1
|
463 |
+
value: 21.0
|
464 |
+
- type: precision_at_10
|
465 |
+
value: 4.66
|
466 |
+
- type: precision_at_100
|
467 |
+
value: 0.685
|
468 |
+
- type: precision_at_1000
|
469 |
+
value: 0.086
|
470 |
+
- type: precision_at_3
|
471 |
+
value: 10.732999999999999
|
472 |
+
- type: precision_at_5
|
473 |
+
value: 7.82
|
474 |
+
- type: recall_at_1
|
475 |
+
value: 21.0
|
476 |
+
- type: recall_at_10
|
477 |
+
value: 46.6
|
478 |
+
- type: recall_at_100
|
479 |
+
value: 68.5
|
480 |
+
- type: recall_at_1000
|
481 |
+
value: 85.6
|
482 |
+
- type: recall_at_3
|
483 |
+
value: 32.2
|
484 |
+
- type: recall_at_5
|
485 |
+
value: 39.1
|
486 |
+
- task:
|
487 |
+
type: Classification
|
488 |
+
dataset:
|
489 |
+
type: C-MTEB/IFlyTek-classification
|
490 |
+
name: MTEB IFlyTek
|
491 |
+
config: default
|
492 |
+
split: validation
|
493 |
+
revision: None
|
494 |
+
metrics:
|
495 |
+
- type: accuracy
|
496 |
+
value: 44.878799538283964
|
497 |
+
- type: f1
|
498 |
+
value: 33.84678310261366
|
499 |
+
- task:
|
500 |
+
type: Classification
|
501 |
+
dataset:
|
502 |
+
type: C-MTEB/JDReview-classification
|
503 |
+
name: MTEB JDReview
|
504 |
+
config: default
|
505 |
+
split: test
|
506 |
+
revision: None
|
507 |
+
metrics:
|
508 |
+
- type: accuracy
|
509 |
+
value: 82.1951219512195
|
510 |
+
- type: ap
|
511 |
+
value: 46.78292030042397
|
512 |
+
- type: f1
|
513 |
+
value: 76.20482468514128
|
514 |
+
- task:
|
515 |
+
type: STS
|
516 |
+
dataset:
|
517 |
+
type: C-MTEB/LCQMC
|
518 |
+
name: MTEB LCQMC
|
519 |
+
config: default
|
520 |
+
split: test
|
521 |
+
revision: None
|
522 |
+
metrics:
|
523 |
+
- type: cos_sim_pearson
|
524 |
+
value: 62.84331627244547
|
525 |
+
- type: cos_sim_spearman
|
526 |
+
value: 68.39990265073726
|
527 |
+
- type: euclidean_pearson
|
528 |
+
value: 66.87431827169324
|
529 |
+
- type: euclidean_spearman
|
530 |
+
value: 68.39990264979167
|
531 |
+
- type: manhattan_pearson
|
532 |
+
value: 66.89702078900328
|
533 |
+
- type: manhattan_spearman
|
534 |
+
value: 68.42107302159141
|
535 |
+
- task:
|
536 |
+
type: Reranking
|
537 |
+
dataset:
|
538 |
+
type: C-MTEB/Mmarco-reranking
|
539 |
+
name: MTEB MMarcoReranking
|
540 |
+
config: default
|
541 |
+
split: dev
|
542 |
+
revision: None
|
543 |
+
metrics:
|
544 |
+
- type: map
|
545 |
+
value: 9.28600891904827
|
546 |
+
- type: mrr
|
547 |
+
value: 8.057936507936509
|
548 |
+
- task:
|
549 |
+
type: Retrieval
|
550 |
+
dataset:
|
551 |
+
type: C-MTEB/MMarcoRetrieval
|
552 |
+
name: MTEB MMarcoRetrieval
|
553 |
+
config: default
|
554 |
+
split: dev
|
555 |
+
revision: None
|
556 |
+
metrics:
|
557 |
+
- type: map_at_1
|
558 |
+
value: 22.820999999999998
|
559 |
+
- type: map_at_10
|
560 |
+
value: 30.44
|
561 |
+
- type: map_at_100
|
562 |
+
value: 31.35
|
563 |
+
- type: map_at_1000
|
564 |
+
value: 31.419000000000004
|
565 |
+
- type: map_at_3
|
566 |
+
value: 28.134999999999998
|
567 |
+
- type: map_at_5
|
568 |
+
value: 29.482000000000003
|
569 |
+
- type: mrr_at_1
|
570 |
+
value: 23.782
|
571 |
+
- type: mrr_at_10
|
572 |
+
value: 31.141999999999996
|
573 |
+
- type: mrr_at_100
|
574 |
+
value: 32.004
|
575 |
+
- type: mrr_at_1000
|
576 |
+
value: 32.068000000000005
|
577 |
+
- type: mrr_at_3
|
578 |
+
value: 28.904000000000003
|
579 |
+
- type: mrr_at_5
|
580 |
+
value: 30.214999999999996
|
581 |
+
- type: ndcg_at_1
|
582 |
+
value: 23.782
|
583 |
+
- type: ndcg_at_10
|
584 |
+
value: 34.625
|
585 |
+
- type: ndcg_at_100
|
586 |
+
value: 39.226
|
587 |
+
- type: ndcg_at_1000
|
588 |
+
value: 41.128
|
589 |
+
- type: ndcg_at_3
|
590 |
+
value: 29.968
|
591 |
+
- type: ndcg_at_5
|
592 |
+
value: 32.35
|
593 |
+
- type: precision_at_1
|
594 |
+
value: 23.782
|
595 |
+
- type: precision_at_10
|
596 |
+
value: 4.994
|
597 |
+
- type: precision_at_100
|
598 |
+
value: 0.736
|
599 |
+
- type: precision_at_1000
|
600 |
+
value: 0.09
|
601 |
+
- type: precision_at_3
|
602 |
+
value: 12.13
|
603 |
+
- type: precision_at_5
|
604 |
+
value: 8.495999999999999
|
605 |
+
- type: recall_at_1
|
606 |
+
value: 22.820999999999998
|
607 |
+
- type: recall_at_10
|
608 |
+
value: 47.141
|
609 |
+
- type: recall_at_100
|
610 |
+
value: 68.952
|
611 |
+
- type: recall_at_1000
|
612 |
+
value: 83.985
|
613 |
+
- type: recall_at_3
|
614 |
+
value: 34.508
|
615 |
+
- type: recall_at_5
|
616 |
+
value: 40.232
|
617 |
+
- task:
|
618 |
+
type: Classification
|
619 |
+
dataset:
|
620 |
+
type: mteb/amazon_massive_intent
|
621 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
622 |
+
config: zh-CN
|
623 |
+
split: test
|
624 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
625 |
+
metrics:
|
626 |
+
- type: accuracy
|
627 |
+
value: 57.343644922663074
|
628 |
+
- type: f1
|
629 |
+
value: 56.744802953803486
|
630 |
+
- task:
|
631 |
+
type: Classification
|
632 |
+
dataset:
|
633 |
+
type: mteb/amazon_massive_scenario
|
634 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
635 |
+
config: zh-CN
|
636 |
+
split: test
|
637 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
638 |
+
metrics:
|
639 |
+
- type: accuracy
|
640 |
+
value: 62.363819771351714
|
641 |
+
- type: f1
|
642 |
+
value: 62.15920863434656
|
643 |
+
- task:
|
644 |
+
type: Retrieval
|
645 |
+
dataset:
|
646 |
+
type: C-MTEB/MedicalRetrieval
|
647 |
+
name: MTEB MedicalRetrieval
|
648 |
+
config: default
|
649 |
+
split: dev
|
650 |
+
revision: None
|
651 |
+
metrics:
|
652 |
+
- type: map_at_1
|
653 |
+
value: 14.6
|
654 |
+
- type: map_at_10
|
655 |
+
value: 18.231
|
656 |
+
- type: map_at_100
|
657 |
+
value: 18.744
|
658 |
+
- type: map_at_1000
|
659 |
+
value: 18.811
|
660 |
+
- type: map_at_3
|
661 |
+
value: 17.133000000000003
|
662 |
+
- type: map_at_5
|
663 |
+
value: 17.663
|
664 |
+
- type: mrr_at_1
|
665 |
+
value: 14.6
|
666 |
+
- type: mrr_at_10
|
667 |
+
value: 18.231
|
668 |
+
- type: mrr_at_100
|
669 |
+
value: 18.744
|
670 |
+
- type: mrr_at_1000
|
671 |
+
value: 18.811
|
672 |
+
- type: mrr_at_3
|
673 |
+
value: 17.133000000000003
|
674 |
+
- type: mrr_at_5
|
675 |
+
value: 17.663
|
676 |
+
- type: ndcg_at_1
|
677 |
+
value: 14.6
|
678 |
+
- type: ndcg_at_10
|
679 |
+
value: 20.349
|
680 |
+
- type: ndcg_at_100
|
681 |
+
value: 23.204
|
682 |
+
- type: ndcg_at_1000
|
683 |
+
value: 25.44
|
684 |
+
- type: ndcg_at_3
|
685 |
+
value: 17.995
|
686 |
+
- type: ndcg_at_5
|
687 |
+
value: 18.945999999999998
|
688 |
+
- type: precision_at_1
|
689 |
+
value: 14.6
|
690 |
+
- type: precision_at_10
|
691 |
+
value: 2.7199999999999998
|
692 |
+
- type: precision_at_100
|
693 |
+
value: 0.414
|
694 |
+
- type: precision_at_1000
|
695 |
+
value: 0.06
|
696 |
+
- type: precision_at_3
|
697 |
+
value: 6.833
|
698 |
+
- type: precision_at_5
|
699 |
+
value: 4.5600000000000005
|
700 |
+
- type: recall_at_1
|
701 |
+
value: 14.6
|
702 |
+
- type: recall_at_10
|
703 |
+
value: 27.200000000000003
|
704 |
+
- type: recall_at_100
|
705 |
+
value: 41.4
|
706 |
+
- type: recall_at_1000
|
707 |
+
value: 60.0
|
708 |
+
- type: recall_at_3
|
709 |
+
value: 20.5
|
710 |
+
- type: recall_at_5
|
711 |
+
value: 22.8
|
712 |
+
- task:
|
713 |
+
type: Classification
|
714 |
+
dataset:
|
715 |
+
type: C-MTEB/MultilingualSentiment-classification
|
716 |
+
name: MTEB MultilingualSentiment
|
717 |
+
config: default
|
718 |
+
split: validation
|
719 |
+
revision: None
|
720 |
+
metrics:
|
721 |
+
- type: accuracy
|
722 |
+
value: 66.58333333333333
|
723 |
+
- type: f1
|
724 |
+
value: 66.26700927460007
|
725 |
+
- task:
|
726 |
+
type: PairClassification
|
727 |
+
dataset:
|
728 |
+
type: C-MTEB/OCNLI
|
729 |
+
name: MTEB Ocnli
|
730 |
+
config: default
|
731 |
+
split: validation
|
732 |
+
revision: None
|
733 |
+
metrics:
|
734 |
+
- type: cos_sim_accuracy
|
735 |
+
value: 72.00866269626421
|
736 |
+
- type: cos_sim_ap
|
737 |
+
value: 77.00520104243304
|
738 |
+
- type: cos_sim_f1
|
739 |
+
value: 74.39303710490151
|
740 |
+
- type: cos_sim_precision
|
741 |
+
value: 65.69579288025889
|
742 |
+
- type: cos_sim_recall
|
743 |
+
value: 85.74445617740233
|
744 |
+
- type: dot_accuracy
|
745 |
+
value: 72.00866269626421
|
746 |
+
- type: dot_ap
|
747 |
+
value: 77.00520104243304
|
748 |
+
- type: dot_f1
|
749 |
+
value: 74.39303710490151
|
750 |
+
- type: dot_precision
|
751 |
+
value: 65.69579288025889
|
752 |
+
- type: dot_recall
|
753 |
+
value: 85.74445617740233
|
754 |
+
- type: euclidean_accuracy
|
755 |
+
value: 72.00866269626421
|
756 |
+
- type: euclidean_ap
|
757 |
+
value: 77.00520104243304
|
758 |
+
- type: euclidean_f1
|
759 |
+
value: 74.39303710490151
|
760 |
+
- type: euclidean_precision
|
761 |
+
value: 65.69579288025889
|
762 |
+
- type: euclidean_recall
|
763 |
+
value: 85.74445617740233
|
764 |
+
- type: manhattan_accuracy
|
765 |
+
value: 72.1710882512182
|
766 |
+
- type: manhattan_ap
|
767 |
+
value: 77.00551017913976
|
768 |
+
- type: manhattan_f1
|
769 |
+
value: 74.23423423423424
|
770 |
+
- type: manhattan_precision
|
771 |
+
value: 64.72898664571878
|
772 |
+
- type: manhattan_recall
|
773 |
+
value: 87.0116156282999
|
774 |
+
- type: max_accuracy
|
775 |
+
value: 72.1710882512182
|
776 |
+
- type: max_ap
|
777 |
+
value: 77.00551017913976
|
778 |
+
- type: max_f1
|
779 |
+
value: 74.39303710490151
|
780 |
+
- task:
|
781 |
+
type: Classification
|
782 |
+
dataset:
|
783 |
+
type: C-MTEB/OnlineShopping-classification
|
784 |
+
name: MTEB OnlineShopping
|
785 |
+
config: default
|
786 |
+
split: test
|
787 |
+
revision: None
|
788 |
+
metrics:
|
789 |
+
- type: accuracy
|
790 |
+
value: 88.19000000000001
|
791 |
+
- type: ap
|
792 |
+
value: 85.13415594781077
|
793 |
+
- type: f1
|
794 |
+
value: 88.17344156114062
|
795 |
+
- task:
|
796 |
+
type: STS
|
797 |
+
dataset:
|
798 |
+
type: C-MTEB/PAWSX
|
799 |
+
name: MTEB PAWSX
|
800 |
+
config: default
|
801 |
+
split: test
|
802 |
+
revision: None
|
803 |
+
metrics:
|
804 |
+
- type: cos_sim_pearson
|
805 |
+
value: 13.70522140998517
|
806 |
+
- type: cos_sim_spearman
|
807 |
+
value: 15.07546667334743
|
808 |
+
- type: euclidean_pearson
|
809 |
+
value: 17.49511420225285
|
810 |
+
- type: euclidean_spearman
|
811 |
+
value: 15.093970931789618
|
812 |
+
- type: manhattan_pearson
|
813 |
+
value: 17.44069961390521
|
814 |
+
- type: manhattan_spearman
|
815 |
+
value: 15.076029291596962
|
816 |
+
- task:
|
817 |
+
type: STS
|
818 |
+
dataset:
|
819 |
+
type: C-MTEB/QBQTC
|
820 |
+
name: MTEB QBQTC
|
821 |
+
config: default
|
822 |
+
split: test
|
823 |
+
revision: None
|
824 |
+
metrics:
|
825 |
+
- type: cos_sim_pearson
|
826 |
+
value: 26.835294224547155
|
827 |
+
- type: cos_sim_spearman
|
828 |
+
value: 27.920204597498856
|
829 |
+
- type: euclidean_pearson
|
830 |
+
value: 26.153796707702803
|
831 |
+
- type: euclidean_spearman
|
832 |
+
value: 27.920971379720548
|
833 |
+
- type: manhattan_pearson
|
834 |
+
value: 26.21954147857523
|
835 |
+
- type: manhattan_spearman
|
836 |
+
value: 27.996860049937478
|
837 |
+
- task:
|
838 |
+
type: STS
|
839 |
+
dataset:
|
840 |
+
type: mteb/sts22-crosslingual-sts
|
841 |
+
name: MTEB STS22 (zh)
|
842 |
+
config: zh
|
843 |
+
split: test
|
844 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
845 |
+
metrics:
|
846 |
+
- type: cos_sim_pearson
|
847 |
+
value: 55.15901259718581
|
848 |
+
- type: cos_sim_spearman
|
849 |
+
value: 61.57967880874167
|
850 |
+
- type: euclidean_pearson
|
851 |
+
value: 53.83523291596683
|
852 |
+
- type: euclidean_spearman
|
853 |
+
value: 61.57967880874167
|
854 |
+
- type: manhattan_pearson
|
855 |
+
value: 54.99971428907956
|
856 |
+
- type: manhattan_spearman
|
857 |
+
value: 61.61229543613867
|
858 |
+
- task:
|
859 |
+
type: STS
|
860 |
+
dataset:
|
861 |
+
type: mteb/sts22-crosslingual-sts
|
862 |
+
name: MTEB STS22 (zh-en)
|
863 |
+
config: zh-en
|
864 |
+
split: test
|
865 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
866 |
+
metrics:
|
867 |
+
- type: cos_sim_pearson
|
868 |
+
value: 34.20930208460845
|
869 |
+
- type: cos_sim_spearman
|
870 |
+
value: 33.879011104224524
|
871 |
+
- type: euclidean_pearson
|
872 |
+
value: 35.08526425284862
|
873 |
+
- type: euclidean_spearman
|
874 |
+
value: 33.879011104224524
|
875 |
+
- type: manhattan_pearson
|
876 |
+
value: 35.509419089701275
|
877 |
+
- type: manhattan_spearman
|
878 |
+
value: 33.30035487147621
|
879 |
+
- task:
|
880 |
+
type: STS
|
881 |
+
dataset:
|
882 |
+
type: C-MTEB/STSB
|
883 |
+
name: MTEB STSB
|
884 |
+
config: default
|
885 |
+
split: test
|
886 |
+
revision: None
|
887 |
+
metrics:
|
888 |
+
- type: cos_sim_pearson
|
889 |
+
value: 82.30068282185835
|
890 |
+
- type: cos_sim_spearman
|
891 |
+
value: 82.16763221361724
|
892 |
+
- type: euclidean_pearson
|
893 |
+
value: 80.52772752433374
|
894 |
+
- type: euclidean_spearman
|
895 |
+
value: 82.16797037220333
|
896 |
+
- type: manhattan_pearson
|
897 |
+
value: 80.51093859500105
|
898 |
+
- type: manhattan_spearman
|
899 |
+
value: 82.17643310049654
|
900 |
+
- task:
|
901 |
+
type: Reranking
|
902 |
+
dataset:
|
903 |
+
type: C-MTEB/T2Reranking
|
904 |
+
name: MTEB T2Reranking
|
905 |
+
config: default
|
906 |
+
split: dev
|
907 |
+
revision: None
|
908 |
+
metrics:
|
909 |
+
- type: map
|
910 |
+
value: 65.14113035189213
|
911 |
+
- type: mrr
|
912 |
+
value: 74.9589270937443
|
913 |
+
- task:
|
914 |
+
type: Retrieval
|
915 |
+
dataset:
|
916 |
+
type: C-MTEB/T2Retrieval
|
917 |
+
name: MTEB T2Retrieval
|
918 |
+
config: default
|
919 |
+
split: dev
|
920 |
+
revision: None
|
921 |
+
metrics:
|
922 |
+
- type: map_at_1
|
923 |
+
value: 12.013
|
924 |
+
- type: map_at_10
|
925 |
+
value: 30.885
|
926 |
+
- type: map_at_100
|
927 |
+
value: 34.643
|
928 |
+
- type: map_at_1000
|
929 |
+
value: 34.927
|
930 |
+
- type: map_at_3
|
931 |
+
value: 21.901
|
932 |
+
- type: map_at_5
|
933 |
+
value: 26.467000000000002
|
934 |
+
- type: mrr_at_1
|
935 |
+
value: 49.623
|
936 |
+
- type: mrr_at_10
|
937 |
+
value: 58.05200000000001
|
938 |
+
- type: mrr_at_100
|
939 |
+
value: 58.61300000000001
|
940 |
+
- type: mrr_at_1000
|
941 |
+
value: 58.643
|
942 |
+
- type: mrr_at_3
|
943 |
+
value: 55.947
|
944 |
+
- type: mrr_at_5
|
945 |
+
value: 57.229
|
946 |
+
- type: ndcg_at_1
|
947 |
+
value: 49.623
|
948 |
+
- type: ndcg_at_10
|
949 |
+
value: 41.802
|
950 |
+
- type: ndcg_at_100
|
951 |
+
value: 49.975
|
952 |
+
- type: ndcg_at_1000
|
953 |
+
value: 53.504
|
954 |
+
- type: ndcg_at_3
|
955 |
+
value: 43.515
|
956 |
+
- type: ndcg_at_5
|
957 |
+
value: 41.576
|
958 |
+
- type: precision_at_1
|
959 |
+
value: 49.623
|
960 |
+
- type: precision_at_10
|
961 |
+
value: 22.052
|
962 |
+
- type: precision_at_100
|
963 |
+
value: 3.6450000000000005
|
964 |
+
- type: precision_at_1000
|
965 |
+
value: 0.45399999999999996
|
966 |
+
- type: precision_at_3
|
967 |
+
value: 38.616
|
968 |
+
- type: precision_at_5
|
969 |
+
value: 31.966
|
970 |
+
- type: recall_at_1
|
971 |
+
value: 12.013
|
972 |
+
- type: recall_at_10
|
973 |
+
value: 41.891
|
974 |
+
- type: recall_at_100
|
975 |
+
value: 67.096
|
976 |
+
- type: recall_at_1000
|
977 |
+
value: 84.756
|
978 |
+
- type: recall_at_3
|
979 |
+
value: 24.695
|
980 |
+
- type: recall_at_5
|
981 |
+
value: 32.09
|
982 |
+
- task:
|
983 |
+
type: Classification
|
984 |
+
dataset:
|
985 |
+
type: C-MTEB/TNews-classification
|
986 |
+
name: MTEB TNews
|
987 |
+
config: default
|
988 |
+
split: validation
|
989 |
+
revision: None
|
990 |
+
metrics:
|
991 |
+
- type: accuracy
|
992 |
+
value: 39.800999999999995
|
993 |
+
- type: f1
|
994 |
+
value: 38.5345899934575
|
995 |
+
- task:
|
996 |
+
type: Clustering
|
997 |
+
dataset:
|
998 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
999 |
+
name: MTEB ThuNewsClusteringP2P
|
1000 |
+
config: default
|
1001 |
+
split: test
|
1002 |
+
revision: None
|
1003 |
+
metrics:
|
1004 |
+
- type: v_measure
|
1005 |
+
value: 40.16574242797479
|
1006 |
+
- task:
|
1007 |
+
type: Clustering
|
1008 |
+
dataset:
|
1009 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
1010 |
+
name: MTEB ThuNewsClusteringS2S
|
1011 |
+
config: default
|
1012 |
+
split: test
|
1013 |
+
revision: None
|
1014 |
+
metrics:
|
1015 |
+
- type: v_measure
|
1016 |
+
value: 24.232617974671754
|
1017 |
+
- task:
|
1018 |
+
type: Retrieval
|
1019 |
+
dataset:
|
1020 |
+
type: C-MTEB/VideoRetrieval
|
1021 |
+
name: MTEB VideoRetrieval
|
1022 |
+
config: default
|
1023 |
+
split: dev
|
1024 |
+
revision: None
|
1025 |
+
metrics:
|
1026 |
+
- type: map_at_1
|
1027 |
+
value: 24.6
|
1028 |
+
- type: map_at_10
|
1029 |
+
value: 31.328
|
1030 |
+
- type: map_at_100
|
1031 |
+
value: 32.088
|
1032 |
+
- type: map_at_1000
|
1033 |
+
value: 32.164
|
1034 |
+
- type: map_at_3
|
1035 |
+
value: 29.133
|
1036 |
+
- type: map_at_5
|
1037 |
+
value: 30.358
|
1038 |
+
- type: mrr_at_1
|
1039 |
+
value: 24.6
|
1040 |
+
- type: mrr_at_10
|
1041 |
+
value: 31.328
|
1042 |
+
- type: mrr_at_100
|
1043 |
+
value: 32.088
|
1044 |
+
- type: mrr_at_1000
|
1045 |
+
value: 32.164
|
1046 |
+
- type: mrr_at_3
|
1047 |
+
value: 29.133
|
1048 |
+
- type: mrr_at_5
|
1049 |
+
value: 30.358
|
1050 |
+
- type: ndcg_at_1
|
1051 |
+
value: 24.6
|
1052 |
+
- type: ndcg_at_10
|
1053 |
+
value: 35.150999999999996
|
1054 |
+
- type: ndcg_at_100
|
1055 |
+
value: 39.024
|
1056 |
+
- type: ndcg_at_1000
|
1057 |
+
value: 41.157
|
1058 |
+
- type: ndcg_at_3
|
1059 |
+
value: 30.637999999999998
|
1060 |
+
- type: ndcg_at_5
|
1061 |
+
value: 32.833
|
1062 |
+
- type: precision_at_1
|
1063 |
+
value: 24.6
|
1064 |
+
- type: precision_at_10
|
1065 |
+
value: 4.74
|
1066 |
+
- type: precision_at_100
|
1067 |
+
value: 0.66
|
1068 |
+
- type: precision_at_1000
|
1069 |
+
value: 0.083
|
1070 |
+
- type: precision_at_3
|
1071 |
+
value: 11.667
|
1072 |
+
- type: precision_at_5
|
1073 |
+
value: 8.06
|
1074 |
+
- type: recall_at_1
|
1075 |
+
value: 24.6
|
1076 |
+
- type: recall_at_10
|
1077 |
+
value: 47.4
|
1078 |
+
- type: recall_at_100
|
1079 |
+
value: 66.0
|
1080 |
+
- type: recall_at_1000
|
1081 |
+
value: 83.0
|
1082 |
+
- type: recall_at_3
|
1083 |
+
value: 35.0
|
1084 |
+
- type: recall_at_5
|
1085 |
+
value: 40.300000000000004
|
1086 |
+
- task:
|
1087 |
+
type: Classification
|
1088 |
+
dataset:
|
1089 |
+
type: C-MTEB/waimai-classification
|
1090 |
+
name: MTEB Waimai
|
1091 |
+
config: default
|
1092 |
+
split: test
|
1093 |
+
revision: None
|
1094 |
+
metrics:
|
1095 |
+
- type: accuracy
|
1096 |
+
value: 83.96000000000001
|
1097 |
+
- type: ap
|
1098 |
+
value: 65.11027167433211
|
1099 |
+
- type: f1
|
1100 |
+
value: 82.03549710974653
|
1101 |
---
|
1102 |
|
1103 |
# DMetaSoul/sbert-chinese-general-v1
|