File size: 1,924 Bytes
b20b53c
e0f85f8
 
 
 
 
 
 
 
 
 
20dc3b8
e0f85f8
20dc3b8
b20b53c
e0f85f8
 
 
 
20dc3b8
e0f85f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b20b53c
 
20dc3b8
 
 
 
 
 
 
 
 
 
 
e0f85f8
b20b53c
e0f85f8
 
 
 
 
 
 
 
 
 
 
b20b53c
e0f85f8
 
 
 
 
 
b20b53c
20dc3b8
e0f85f8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DTNLS/test-NERv3
  results: []
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DTNLS/test-NERv3

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1525
- Precision: 0.0031
- Recall: 0.0128
- F1: 0.0050
- Accuracy: 0.1087

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.1814        | 1.0   | 14   | 2.1525          | 0.0031    | 0.0128 | 0.0050 | 0.1087   |


### Framework versions

- PEFT 0.4.0
- Transformers 4.32.0.dev0
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3