File size: 1,534 Bytes
b20b53c e0f85f8 350d6b0 e0f85f8 b20b53c e0f85f8 350d6b0 e0f85f8 b20b53c e0f85f8 b20b53c e0f85f8 b20b53c e0f85f8 b20b53c e0f85f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-NERv3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-NERv3
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1525
- Precision: 0.0031
- Recall: 0.0128
- F1: 0.0050
- Accuracy: 0.1087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.1814 | 1.0 | 14 | 2.1525 | 0.0031 | 0.0128 | 0.0050 | 0.1087 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|