File size: 1,522 Bytes
b20b53c
9081cd3
 
e0f85f8
 
 
 
 
 
 
 
350d6b0
e0f85f8
b20b53c
e0f85f8
 
 
 
350d6b0
e0f85f8
9081cd3
e0f85f8
111beb8
 
 
 
 
e0f85f8
 
 
 
 
 
 
 
 
 
 
 
 
b20b53c
 
e0f85f8
b20b53c
e0f85f8
 
 
 
 
 
 
 
 
 
 
b20b53c
9081cd3
 
111beb8
e0f85f8
 
 
b20b53c
23fa7a0
 
e0f85f8
111beb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-NERv3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-NERv3

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1950
- Precision: 0.0009
- Recall: 0.0026
- F1: 0.0014
- Accuracy: 0.1510

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.2261        | 1.0   | 14   | 2.1950          | 0.0009    | 0.0026 | 0.0014 | 0.1510   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1