--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-NERv3 results: [] --- # test-NERv3 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0802 - Precision: 0.0073 - Recall: 0.0128 - F1: 0.0093 - Accuracy: 0.1767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.1106 | 1.0 | 14 | 2.0802 | 0.0073 | 0.0128 | 0.0093 | 0.1767 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.14.1