Upload 15 files
Browse files- BackPropogation.py +53 -0
- Lstm_model.h5 +3 -0
- Model_backprop.pkl +3 -0
- Percep_model.pkl +3 -0
- Perceptron.py +40 -0
- SMSSpamCollection +0 -0
- app.py +201 -0
- chck.py +80 -0
- imdb_LSTM.h5 +3 -0
- lstm.h5 +3 -0
- requirements.txt +7 -0
- sms_spam_detection_dnnmodel.h5 +3 -0
- spam_detection_rnn_model.h5 +3 -0
- tokeniser.pkl +3 -0
- tumor_detection_model.h5 +3 -0
BackPropogation.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
|
5 |
+
class BackPropogation:
|
6 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
7 |
+
self.bias = 0
|
8 |
+
self.learning_rate = learning_rate
|
9 |
+
self.max_epochs = epochs
|
10 |
+
self.activation_function = activation_function
|
11 |
+
|
12 |
+
|
13 |
+
def activate(self, x):
|
14 |
+
if self.activation_function == 'step':
|
15 |
+
return 1 if x >= 0 else 0
|
16 |
+
elif self.activation_function == 'sigmoid':
|
17 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
18 |
+
elif self.activation_function == 'relu':
|
19 |
+
return 1 if max(0,x)>=0.5 else 0
|
20 |
+
|
21 |
+
def fit(self, X, y):
|
22 |
+
error_sum=0
|
23 |
+
n_features = X.shape[1]
|
24 |
+
self.weights = np.zeros((n_features))
|
25 |
+
for epoch in tqdm(range(self.max_epochs)):
|
26 |
+
for i in range(len(X)):
|
27 |
+
inputs = X[i]
|
28 |
+
target = y[i]
|
29 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
30 |
+
prediction = self.activate(weighted_sum)
|
31 |
+
|
32 |
+
# Calculating loss and updating weights.
|
33 |
+
error = target - prediction
|
34 |
+
self.weights += self.learning_rate * error * inputs
|
35 |
+
self.bias += self.learning_rate * error
|
36 |
+
|
37 |
+
print(f"Updated Weights after epoch {epoch} with {self.weights}")
|
38 |
+
print("Training Completed")
|
39 |
+
|
40 |
+
def predict(self, X):
|
41 |
+
predictions = []
|
42 |
+
for i in range(len(X)):
|
43 |
+
inputs = X[i]
|
44 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
45 |
+
prediction = self.activate(weighted_sum)
|
46 |
+
predictions.append(prediction)
|
47 |
+
return predictions
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
Lstm_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03fc488fed00a614e9c9d85b4bfc4c3de4bf51f950ab3fdbc959cc8736f456c
|
3 |
+
size 2594296
|
Model_backprop.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08f18405b62db7924aebb1b734d1b1895d4b2a3b1f42b9b34651329488a80e1d
|
3 |
+
size 1896
|
Percep_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94098089d5f8b390533c214ddf2804469db9772089ac429c336a02f2d44927c6
|
3 |
+
size 1063
|
Perceptron.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
|
5 |
+
class Perceptron:
|
6 |
+
|
7 |
+
def __init__(self,learning_rate=0.01, epochs=100,activation_function='step'):
|
8 |
+
self.bias = 0
|
9 |
+
self.learning_rate = learning_rate
|
10 |
+
self.max_epochs = epochs
|
11 |
+
self.activation_function = activation_function
|
12 |
+
|
13 |
+
|
14 |
+
def activate(self, x):
|
15 |
+
if self.activation_function == 'step':
|
16 |
+
return 1 if x >= 0 else 0
|
17 |
+
elif self.activation_function == 'sigmoid':
|
18 |
+
return 1 if (1 / (1 + np.exp(-x)))>=0.5 else 0
|
19 |
+
elif self.activation_function == 'relu':
|
20 |
+
return 1 if max(0,x)>=0.5 else 0
|
21 |
+
|
22 |
+
def fit(self, X, y):
|
23 |
+
n_features = X.shape[1]
|
24 |
+
self.weights = np.random.randint(n_features, size=(n_features))
|
25 |
+
for epoch in tqdm(range(self.max_epochs)):
|
26 |
+
for i in range(len(X)):
|
27 |
+
inputs = X[i]
|
28 |
+
target = y[i]
|
29 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
30 |
+
prediction = self.activate(weighted_sum)
|
31 |
+
print("Training Completed")
|
32 |
+
|
33 |
+
def predict(self, X):
|
34 |
+
predictions = []
|
35 |
+
for i in range(len(X)):
|
36 |
+
inputs = X[i]
|
37 |
+
weighted_sum = np.dot(inputs, self.weights) + self.bias
|
38 |
+
prediction = self.activate(weighted_sum)
|
39 |
+
predictions.append(prediction)
|
40 |
+
return predictions
|
SMSSpamCollection
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import joblib
|
6 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
8 |
+
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
9 |
+
from tensorflow.keras.datasets import imdb
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
from BackPropogation import BackPropogation
|
13 |
+
from Perceptron import Perceptron
|
14 |
+
from sklearn.linear_model import Perceptron
|
15 |
+
import tensorflow as tf
|
16 |
+
import joblib
|
17 |
+
import pickle
|
18 |
+
from numpy import argmax
|
19 |
+
|
20 |
+
|
21 |
+
# Load saved models
|
22 |
+
image_model = load_model('tumor_detection_model.h5')
|
23 |
+
dnn_model = load_model('sms_spam_detection_dnnmodel.h5')
|
24 |
+
rnn_model = load_model('spam_detection_rnn_model.h5')
|
25 |
+
|
26 |
+
# Loading the model using pickle
|
27 |
+
with open(r'D:/one/OneDrive/Desktop/Streamlit/Model_backprop.pkl', 'rb') as file:
|
28 |
+
backprop_model = pickle.load(file)
|
29 |
+
|
30 |
+
with open(r'D:/one/OneDrive/Desktop/Streamlit/Percep_model.pkl', 'rb') as file:
|
31 |
+
perceptron_model = pickle.load(file)
|
32 |
+
|
33 |
+
with open(r'D:/one/OneDrive/Desktop/Streamlit/tokeniser.pkl', 'rb') as file:
|
34 |
+
loaded_tokeniser = pickle.load(file)
|
35 |
+
|
36 |
+
lstm_model_path='Lstm_model.h5'
|
37 |
+
|
38 |
+
# Streamlit app
|
39 |
+
st.title("Classification")
|
40 |
+
|
41 |
+
# Sidebar
|
42 |
+
task = st.sidebar.selectbox("Select Task", ["Tumor Detection ", "Sentiment Classification"])
|
43 |
+
tokeniser = tf.keras.preprocessing.text.Tokenizer()
|
44 |
+
max_length=10
|
45 |
+
|
46 |
+
def predictdnn_spam(text):
|
47 |
+
sequence = loaded_tokeniser.texts_to_sequences([text])
|
48 |
+
padded_sequence = pad_sequences(sequence, maxlen=10)
|
49 |
+
prediction = dnn_model.predict(padded_sequence)[0][0]
|
50 |
+
if prediction >= 0.5:
|
51 |
+
return "not spam"
|
52 |
+
else:
|
53 |
+
return "spam"
|
54 |
+
def preprocess_imdbtext(text, maxlen=200, num_words=10000):
|
55 |
+
# Tokenizing the text
|
56 |
+
tokenizer = Tokenizer(num_words=num_words)
|
57 |
+
tokenizer.fit_on_texts(text)
|
58 |
+
|
59 |
+
# Converting text to sequences
|
60 |
+
sequences = tokenizer.texts_to_sequences(text)
|
61 |
+
|
62 |
+
# Padding sequences to a fixed length
|
63 |
+
padded_sequences = pad_sequences(sequences, maxlen=maxlen)
|
64 |
+
|
65 |
+
return padded_sequences, tokenizer
|
66 |
+
|
67 |
+
def predict_sentiment_backprop(text, model):
|
68 |
+
preprocessed_text = preprocess_imdbtext(text, 200)
|
69 |
+
prediction = backprop_model.predict(preprocessed_text)
|
70 |
+
return prediction
|
71 |
+
|
72 |
+
def preprocess_imdb_lstm(user_input, tokenizer, max_review_length=500):
|
73 |
+
# Tokenize and pad the user input
|
74 |
+
user_input_sequence = tokenizer.texts_to_sequences([user_input])
|
75 |
+
user_input_padded = pad_sequences(user_input_sequence, maxlen=max_review_length)
|
76 |
+
return user_input_padded
|
77 |
+
|
78 |
+
def predict_sentiment_lstm(model, user_input, tokenizer):
|
79 |
+
preprocessed_input = preprocess_imdb_lstm(user_input, tokenizer)
|
80 |
+
prediction = model.predict(preprocessed_input)
|
81 |
+
return prediction
|
82 |
+
|
83 |
+
def predict_sentiment_precep(user_input, num_words=1000, max_len=200):
|
84 |
+
word_index = imdb.get_word_index()
|
85 |
+
input_sequence = [word_index[word] if word in word_index and word_index[word] < num_words else 0 for word in user_input.split()]
|
86 |
+
padded_sequence = pad_sequences([input_sequence], maxlen=max_len)
|
87 |
+
return padded_sequence
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
def preprocess_message_dnn(message, tokeniser, max_length):
|
92 |
+
# Tokenize and pad the input message
|
93 |
+
encoded_message = tokeniser.texts_to_sequences([message])
|
94 |
+
padded_message = tf.keras.preprocessing.sequence.pad_sequences(encoded_message, maxlen=max_length, padding='post')
|
95 |
+
return padded_message
|
96 |
+
|
97 |
+
def predict_rnnspam(message, tokeniser, max_length):
|
98 |
+
# Preprocess the message
|
99 |
+
processed_message = preprocess_message_dnn(message, tokeniser, max_length)
|
100 |
+
|
101 |
+
# Predict spam or ham
|
102 |
+
prediction = rnn_model.predict(processed_message)
|
103 |
+
if prediction >= 0.5:
|
104 |
+
return "Spam"
|
105 |
+
else:
|
106 |
+
return "Ham"
|
107 |
+
|
108 |
+
|
109 |
+
# make a prediction for CNN
|
110 |
+
def preprocess_image(image):
|
111 |
+
image = image.resize((299, 299))
|
112 |
+
image_array = np.array(image)
|
113 |
+
preprocessed_image = preprocess_input(image_array)
|
114 |
+
|
115 |
+
return preprocessed_image
|
116 |
+
|
117 |
+
def make_prediction_cnn(image, image_model):
|
118 |
+
img = image.resize((128, 128))
|
119 |
+
img_array = np.array(img)
|
120 |
+
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
|
121 |
+
|
122 |
+
preprocessed_image = preprocess_input(img_array)
|
123 |
+
prediction = image_model.predict(preprocessed_image)
|
124 |
+
|
125 |
+
if prediction > 0.5:
|
126 |
+
st.write("Tumor Detected")
|
127 |
+
else:
|
128 |
+
st.write("No Tumor")
|
129 |
+
if task == "Sentiment Classification":
|
130 |
+
st.subheader("Choose Model")
|
131 |
+
model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation","LSTM"])
|
132 |
+
|
133 |
+
st.subheader("Text Input")
|
134 |
+
|
135 |
+
|
136 |
+
if model_choice=='DNN':
|
137 |
+
text_input = st.text_area("Enter Text")
|
138 |
+
if st.button("Predict"):
|
139 |
+
if text_input:
|
140 |
+
prediction_result = predictdnn_spam(text_input)
|
141 |
+
st.write(f"The review's class is: {prediction_result}")
|
142 |
+
else:
|
143 |
+
st.write("Enter a movie review")
|
144 |
+
|
145 |
+
elif model_choice == "RNN":
|
146 |
+
text_input = st.text_area("Enter Text")
|
147 |
+
if text_input:
|
148 |
+
prediction_result = predict_rnnspam(text_input,loaded_tokeniser,max_length=10)
|
149 |
+
if st.button("Predict"):
|
150 |
+
st.write(f"The message is classified as: {prediction_result}")
|
151 |
+
else:
|
152 |
+
st.write("Please enter some text for prediction")
|
153 |
+
elif model_choice == "Perceptron":
|
154 |
+
text_input = st.text_area("Enter Text" )
|
155 |
+
if st.button('Predict'):
|
156 |
+
processed_input = predict_sentiment_precep(text_input)
|
157 |
+
prediction = perceptron_model.predict(processed_input)[0]
|
158 |
+
sentiment = "Positive" if prediction == 1 else "Negative"
|
159 |
+
st.write(f"Predicted Sentiment: {sentiment}")
|
160 |
+
elif model_choice == "LSTM":
|
161 |
+
|
162 |
+
lstm_model = tf.keras.models.load_model(lstm_model_path)
|
163 |
+
text_input = st.text_area("Enter text for sentiment analysis:", "")
|
164 |
+
if st.button("Predict"):
|
165 |
+
tokenizer = Tokenizer(num_words=5000)
|
166 |
+
prediction = predict_sentiment_lstm(lstm_model, text_input, tokenizer)
|
167 |
+
|
168 |
+
if prediction[0][0]<0.5 :
|
169 |
+
result="Negative"
|
170 |
+
st.write(f"The message is classified as: {result}")
|
171 |
+
else:
|
172 |
+
result="Positive"
|
173 |
+
st.write(f"The message is classified as: {result}")
|
174 |
+
|
175 |
+
elif model_choice == "Backpropagation":
|
176 |
+
text_input = st.text_area("Enter Text" )
|
177 |
+
if st.button('Predict'):
|
178 |
+
processed_input = predict_sentiment_precep(text_input)
|
179 |
+
prediction = backprop_model.predict(processed_input)[0]
|
180 |
+
sentiment = "Positive" if prediction == 1 else "Negative"
|
181 |
+
st.write(f"Predicted Sentiment: {sentiment}")
|
182 |
+
|
183 |
+
else:
|
184 |
+
st.subheader("Choose Model")
|
185 |
+
model_choice = st.radio("Select Model", ["CNN"])
|
186 |
+
|
187 |
+
st.subheader("Image Input")
|
188 |
+
image_input = st.file_uploader("Choose an image...", type="jpg")
|
189 |
+
|
190 |
+
if image_input is not None:
|
191 |
+
image = Image.open(image_input)
|
192 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
193 |
+
|
194 |
+
# Preprocess the image
|
195 |
+
preprocessed_image = preprocess_image(image)
|
196 |
+
|
197 |
+
if st.button("Predict"):
|
198 |
+
if model_choice == "CNN":
|
199 |
+
make_prediction_cnn(image, image_model)
|
200 |
+
|
201 |
+
|
chck.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
8 |
+
import tensorflow as tf
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
# Load saved models
|
12 |
+
image_model = load_model('tumor_detection_model.h5')
|
13 |
+
dnn_model = load_model('sms_spam_detection_dnnmodel.h5')
|
14 |
+
rnn_model = load_model('spam_detection_rnn_model.h5')
|
15 |
+
perceptron_model = joblib.load('imdb_perceptron_model.pkl')
|
16 |
+
backprop_model = joblib.load('backprop_model.pkl')
|
17 |
+
LSTM_model = load_model('imdb_LSTM.h5')
|
18 |
+
|
19 |
+
# Streamlit app
|
20 |
+
st.title("Classification")
|
21 |
+
|
22 |
+
# Sidebar
|
23 |
+
task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"])
|
24 |
+
|
25 |
+
def preprocess_message_dnn(message, tokeniser, max_length):
|
26 |
+
encoded_message = tokeniser.texts_to_sequences([message])
|
27 |
+
padded_message = pad_sequences(encoded_message, maxlen=max_length, padding='post')
|
28 |
+
return padded_message
|
29 |
+
|
30 |
+
def predict_dnnspam(message, tokeniser, max_length):
|
31 |
+
processed_message = preprocess_message_dnn(message, tokeniser, max_length)
|
32 |
+
prediction = dnn_model.predict(processed_message)
|
33 |
+
return "Spam" if prediction >= 0.5 else "Ham"
|
34 |
+
|
35 |
+
# Other prediction functions for sentiment analysis can follow a similar pattern
|
36 |
+
|
37 |
+
# Function for CNN prediction
|
38 |
+
def preprocess_image(image):
|
39 |
+
image = image.resize((299, 299))
|
40 |
+
image_array = np.array(image)
|
41 |
+
preprocessed_image = preprocess_input(image_array)
|
42 |
+
return preprocessed_image
|
43 |
+
|
44 |
+
def make_prediction_cnn(image, model):
|
45 |
+
img = image.resize((128, 128))
|
46 |
+
img_array = np.array(img)
|
47 |
+
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
|
48 |
+
preprocessed_image = preprocess_input(img_array)
|
49 |
+
prediction = model.predict(preprocessed_image)
|
50 |
+
return "Tumor Detected" if prediction > 0.5 else "No Tumor"
|
51 |
+
|
52 |
+
if task == "Sentiment Classification":
|
53 |
+
st.subheader("Choose Model")
|
54 |
+
model_choice = st.radio("Select Model", ["DNN", "RNN", "Perceptron", "Backpropagation", "LSTM"])
|
55 |
+
|
56 |
+
st.subheader("Text Input")
|
57 |
+
text_input = st.text_area("Enter Text")
|
58 |
+
|
59 |
+
if st.button("Predict"):
|
60 |
+
if model_choice == "DNN":
|
61 |
+
# You need to define tokeniser and max_length for DNN model
|
62 |
+
prediction_result = predict_dnnspam(text_input, tokeniser, max_length)
|
63 |
+
st.write(f"The message is classified as: {prediction_result}")
|
64 |
+
# Other model choices should call respective prediction functions similarly
|
65 |
+
|
66 |
+
else:
|
67 |
+
st.subheader("Choose Model")
|
68 |
+
model_choice = st.radio("Select Model", ["CNN"])
|
69 |
+
|
70 |
+
st.subheader("Image Input")
|
71 |
+
image_input = st.file_uploader("Choose an image...", type="jpg")
|
72 |
+
|
73 |
+
if image_input is not None:
|
74 |
+
image = Image.open(image_input)
|
75 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
76 |
+
|
77 |
+
if st.button("Predict"):
|
78 |
+
if model_choice == "CNN":
|
79 |
+
prediction_result = make_prediction_cnn(image, image_model)
|
80 |
+
st.write(prediction_result)
|
imdb_LSTM.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05b99b60023dd89e8eaa59c6713aa7e505c248912d15c58b8737e84bcdd35e7f
|
3 |
+
size 2593696
|
lstm.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03fc488fed00a614e9c9d85b4bfc4c3de4bf51f950ab3fdbc959cc8736f456c
|
3 |
+
size 2594296
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
streamlit
|
3 |
+
Pillow
|
4 |
+
tensorflow
|
5 |
+
numpy
|
6 |
+
tqdm
|
7 |
+
scikit-learn
|
sms_spam_detection_dnnmodel.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98a69a1ccd2e7048bb72447cff024b354fa7cdec602de3d0b31f6129963951f9
|
3 |
+
size 3160600
|
spam_detection_rnn_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e609428e9471fe8e79de5acf38345621a7830dac2487aa5759d7c7f2982ad8b9
|
3 |
+
size 2271056
|
tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:531dafe93d5f15a108f6516d069d6ee8c8245965da619c6290c5bcc9d877cb84
|
3 |
+
size 5412642
|
tumor_detection_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:180027aca8773916e489be80ab2546c148857c9af4db0e39c6a31a5f28cdcc52
|
3 |
+
size 391814584
|